Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1425975

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1425975

The Global Market for Advanced Chemical Recycling 2024-2040

PUBLISHED:
PAGES: 267 Pages, 58 Tables, 54 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 1290

Add to Cart

Advanced recycling technologies that utilize heat or chemical solvents to recycle plastics into new plastics, fuels or chemicals are a key strategy for solving the global plastic problem, and are priority areas in government green initiatives. Advanced chemical recycling technologies are now being developed by more than 150 companies worldwide, and capacities are increasing. Companies including ExxonMobil, New Hope Energy, Nexus Circular, Eastman, Encina are planning to build large plastics recycling plants. As well as complementing traditional mechanical recycling, advanced recycling offers benefits such as widening the range of recyclable plastic options, producing high value plastics (e.g. for flexible food packaging) and improving sustainability (using waste rather than fossil fuels for plastics production).

“The Global Market for Advanced Chemical Recycling 2024-2040” provides a comprehensive analysis of the global advanced chemical recycling technologies market. The report covers market drivers, trends, industry developments, capacities, polymer demand forecasts segmented by recycling technology, regional demand forecasts, product examples, value chain analysis, life cycle assessments, yields, pricing, and challenges. 160 companies active in advanced recycling technologies such as pyrolysis, gasification, dissolution, depolymerization, and more are profiled. Detailed technology overviews, SWOT analyses, and company capacity details are also provided.

Regional market demand forecasts are broken down by recycling technology for Europe, North America, South America, Asia, Oceania, and Africa. Polymer-specific demand forecasts are provided globally and by region for PE, PP, PET, PS, nylon and other polymers. The report analyses how virgin plastic production, mechanical recycling, pyrolysis, monomer recycling and other technologies will shape polymer demand.

The report provides unique insights into the market future, current capacities, life cycle assessments, products, and opportunities in advanced chemical recycling. It is designed for companies in the plastics value chain seeking detailed analysis on growth opportunities, partnerships, investment, positioning, and challenges.

Report contents include:

  • Overview of the global plastics and bioplastics markets.
  • Market drivers and trends.
  • Advanced chemical recycling industry news, funding and developments 2020-2023.
  • Capacities by technology.
  • Market maps and value chain.
  • In-depth analysis of advanced chemical recycling technologies.
  • Global polymer demand 2018-2040, segmented by technology, types and regions, million metric tons.
  • Global demand by recycling process, 2018-2040, million metric tons.
  • Advanced chemical recycling technologies covered include:
  • Pyrolysis
  • Gasification
  • Dissolution
  • Depolymerisation
  • Emerging technologies.
  • Profiles of 164 companies. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Hyundai Chemical Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, RePEaT Co., Ltd., Synova and SABIC (full list of companies profiled in table of contents).

TABLE OF CONTENTS

1. CLASSIFICATION OF RECYCLING TECHNOLOGIES

2. RESEARCH METHODOLOGY

3. INTRODUCTION

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Bio-based or renewable plastics
    • 3.4.1. Drop-in bio-based plastics
    • 3.4.2. Novel bio-based plastics
  • 3.5. Biodegradable and compostable plastics
    • 3.5.1. Biodegradability
    • 3.5.2. Compostability
  • 3.6. Plastic pollution
  • 3.7. Policy and regulations
  • 3.8. The circular economy
  • 3.9. Plastic recycling
    • 3.9.1. Mechanical recycling
      • 3.9.1.1. Closed-loop mechanical recycling
      • 3.9.1.2. Open-loop mechanical recycling
      • 3.9.1.3. Polymer types, use, and recovery
    • 3.9.2. Advanced recycling (molecular recycling, chemical recycling)
      • 3.9.2.1. Main streams of plastic waste
      • 3.9.2.2. Comparison of mechanical and advanced chemical recycling
  • 3.10. Life cycle assessment

4. THE ADVANCED CHEMICAL RECYCLING MARKET

  • 4.1. Market drivers and trends
  • 4.2. Industry news, funding and developments 2020-2023
  • 4.3. Capacities
  • 4.4. Global polymer demand 2022-2040, segmented by recycling technology
    • 4.4.1. PE
    • 4.4.2. PP
    • 4.4.3. PET
    • 4.4.4. PS
    • 4.4.5. Nylon
    • 4.4.6. Others
  • 4.5. Global polymer demand 2022-2040, segmented by recycling technology, by region
    • 4.5.1. Europe
    • 4.5.2. North America
    • 4.5.3. South America
    • 4.5.4. Asia
    • 4.5.5. Oceania
    • 4.5.6. Africa
  • 4.6. Chemically recycled plastic products
  • 4.7. Market map
  • 4.8. Value chain
  • 4.9. Life Cycle Assessments (LCA) of advanced plastics recycling processes
    • 4.9.1. PE
    • 4.9.2. PP
    • 4.9.3. PET
  • 4.10. Recycled plastic yield and cost
    • 4.10.1. Plastic yield of each chemical recycling technologies
    • 4.10.2. Prices
  • 4.11. Market challenges

5. ADVANCED RECYCLING TECHNOLOGIES

  • 5.1. Applications
  • 5.2. Pyrolysis
    • 5.2.1. Non-catalytic
    • 5.2.2. Catalytic
      • 5.2.2.1. Polystyrene pyrolysis
      • 5.2.2.2. Pyrolysis for production of bio fuel
      • 5.2.2.3. Used tires pyrolysis
        • 5.2.2.3.1. Conversion to biofuel
      • 5.2.2.4. Co-pyrolysis of biomass and plastic wastes
    • 5.2.3. SWOT analysis
    • 5.2.4. Companies and capacities
  • 5.3. Gasification
    • 5.3.1. Technology overview
      • 5.3.1.1. Syngas conversion to methanol
      • 5.3.1.2. Biomass gasification and syngas fermentation
      • 5.3.1.3. Biomass gasification and syngas thermochemical conversion
    • 5.3.2. SWOT analysis
    • 5.3.3. Companies and capacities (current and planned)
  • 5.4. Dissolution
    • 5.4.1. Technology overview
    • 5.4.2. SWOT analysis
    • 5.4.3. Companies and capacities (current and planned)
  • 5.5. Depolymerisation
    • 5.5.1. Hydrolysis
      • 5.5.1.1. Technology overview
      • 5.5.1.2. SWOT analysis
    • 5.5.2. Enzymolysis
      • 5.5.2.1. Technology overview
      • 5.5.2.2. SWOT analysis
    • 5.5.3. Methanolysis
      • 5.5.3.1. Technology overview
      • 5.5.3.2. SWOT analysis
    • 5.5.4. Glycolysis
      • 5.5.4.1. Technology overview
      • 5.5.4.2. SWOT analysis
    • 5.5.5. Aminolysis
      • 5.5.5.1. Technology overview
      • 5.5.5.2. SWOT analysis
    • 5.5.6. Companies and capacities (current and planned)
  • 5.6. Other advanced chemical recycling technologies
    • 5.6.1. Hydrothermal cracking
    • 5.6.2. Pyrolysis with in-line reforming
    • 5.6.3. Microwave-assisted pyrolysis
    • 5.6.4. Plasma pyrolysis
    • 5.6.5. Plasma gasification
    • 5.6.6. Supercritical fluids
    • 5.6.7. Carbon fiber recycling
      • 5.6.7.1. Processes
      • 5.6.7.2. Companies

6. COMPANY PROFILES

  • 6.1. Aduro Clean Technologies, Inc.
  • 6.2. Agilyx
  • 6.3. Alpha Recyclage Composites
  • 6.4. Alterra Energy
  • 6.5. Ambercycle, Inc.
  • 6.6. Anellotech, Inc.
  • 6.7. Anhui Oursun Resource Technology Co., Ltd.
  • 6.8. APChemi Pvt. Ltd
  • 6.9. APK AG
  • 6.10. Aquafil S.p.A
  • 6.11. ARCUS Greencycling GmbH
  • 6.12. Arkema
  • 6.13. Axens SA
  • 6.14. BASF
  • 6.15. Bcircular
  • 6.16. BioBTX B.V
  • 6.17. Biofabrik Technologies GmbH
  • 6.18. Blest (Microengineer Co., Ltd.)
  • 6.19. Blue Cycle
  • 6.20. BlueAlp Technology
  • 6.21. Borealis AG
  • 6.22. Boston Materials LLC
  • 6.23. Braven Environmental, LLC
  • 6.24. Brightmark
  • 6.25. Cadel Deinking S.L
  • 6.26. Carbios
  • 6.27. Carboliq GmbH
  • 6.28. Carbon Fiber Recycling LLC
  • 6.29. Cassandra Oil AB
  • 6.30. CIRC
  • 6.31. Chian Tianying
  • 6.32. Chevron Phillips Chemical
  • 6.33. Clariter
  • 6.34. Clean Planet Energy
  • 6.35. Corsair Group International
  • 6.36. Covestro
  • 6.37. CreaCycle GmbH
  • 6.38. CuRe Technology BV
  • 6.39. Cyclic Materials
  • 6.40. DePoly SA
  • 6.41. Dow Chemical Company
  • 6.42. DyeRecycle
  • 6.43. Eastman Chemical Company
  • 6.44. Eco Fuel Technology, Inc.
  • 6.45. Ecopek S.A
  • 6.46. Eeden GmbH
  • 6.47. Emery Oleochemicals
  • 6.48. Encina Development Group, LLC
  • 6.49. Enerkem, Inc.
  • 6.50. Enval Ltd
  • 6.51. Environmental Solutions (Asia) Pte Ltd
  • 6.52. Epoch Biodesign
  • 6.53. Equipolymers GmbH
  • 6.54. Evonik Industries AG
  • 6.55. Evrnu
  • 6.56. Extracthive
  • 6.57. ExxonMobil
  • 6.58. Fairmat
  • 6.59. Fulcrum BioEnergy
  • 6.60. Futerro
  • 6.61. Fych Technologies
  • 6.62. Garbo S.r.l
  • 6.63. GreenMantra Technologies
  • 6.64. Gr3n SA
  • 6.65. Handerek Technologies
  • 6.66. Hanwha Solutions
  • 6.67. Honeywell
  • 6.68. Hyundai Chemical
  • 6.69. Indaver nv
  • 6.70. InEnTec, Inc.
  • 6.71. INEOS Styrolution
  • 6.72. Infinited Fiber Company Oy
  • 6.73. Ioncell Oy
  • 6.74. Ioniqa Technologies B.V
  • 6.75. Itero Technologies
  • 6.76. Jeplan, Inc.
  • 6.77. JFE Chemical Corporation
  • 6.78. Kaneka Corporation
  • 6.79. Khepra
  • 6.80. Klean Industries
  • 6.81. Lanzatech
  • 6.82. Licella
  • 6.83. Loop Industries, Inc.
  • 6.84. LOTTE Chemical
  • 6.85. Lummus Technology LLC
  • 6.86. LyondellBasell Industries Holdings B.V
  • 6.87. Metaspectral
  • 6.88. Mint Innovation
  • 6.89. Microwave Chemical Co. Ltd
  • 6.90. Mitsubishi Chemical
  • 6.91. MolyWorks Materials
  • 6.92. Mote, Inc.
  • 6.93. Mura Technology
  • 6.94. Nanya Plastics Corporation
  • 6.95. NatureWorks
  • 6.96. Neste Oyj
  • 6.97. New Hope Energy
  • 6.98. Nexus Circular LLC
  • 6.99. Next Generation Group (NGR)
  • 6.100. Novoloop
  • 6.101. Olefy Technologies
  • 6.102. OMV AG
  • 6.103. Orlen Unipetrol Rpa S.r.o
  • 6.104. Österreichische Mineralölverwaltung (OMV)
  • 6.105. PETRONAS Chemicals Group Berhad
  • 6.106. Plastic Back
  • 6.107. Plastic Energy Limited
  • 6.108. Plastic2Oil, Inc.
  • 6.109. Plastogaz SA
  • 6.110. Poliloop
  • 6.111. Polycycl
  • 6.112. Polynate
  • 6.113. PolyStyreneLoop
  • 6.114. Polystyvert, Inc.
  • 6.115. Poseidon Plastics
  • 6.116. Premirr Plastics, Inc.
  • 6.117. Protein Evolution
  • 6.118. Pryme BV
  • 6.119. PureCycle Technologies
  • 6.120. Pyrowave
  • 6.121. Qairos Energies
  • 6.122. QuantaFuel ASA
  • 6.123. Recenso GmbH
  • 6.124. Recyc'ELIT
  • 6.125. ReNew ELP
  • 6.126. Re:newcell
  • 6.127. Renew One
  • 6.128. RePEaT Co., Ltd.
  • 6.129. Repsol
  • 6.130. Resiclo Oy
  • 6.131. revalyu Resources GmbH
  • 6.132. ReVital Polymers, Inc.
  • 6.133. Rittec Umwelttechnik GmbH
  • 6.134. Sabic
  • 6.135. Samsara Eco Pty Ltd.
  • 6.136. Saperatec GmbH
  • 6.137. Scindo
  • 6.138. SCG Chemicals
  • 6.139. Sekisui Chemical Co., Ltd.
  • 6.140. Shell
  • 6.141. Showa Denko K.K
  • 6.142. Shuye Environmental Technology
  • 6.143. Sierra Energy
  • 6.144. SK Geo Centric (SKGC)
  • 6.145. SK Global Chemical Co., Ltd.
  • 6.146. Sulzer Chemtech AG
  • 6.147. Sumitomo Chemical
  • 6.148. Sweet Gazoil
  • 6.149. Synova
  • 6.150. Synpet Technologies
  • 6.151. Technisoil Industrial
  • 6.152. Teijin Frontier Co., Ltd.
  • 6.153. TotalEnergies
  • 6.154. Toyo Styrene Co., Ltd.
  • 6.155. Trinseo
  • 6.156. Triple Helix
  • 6.157. Uflex
  • 6.158. Valoren
  • 6.159. Vartega Inc.
  • 6.160. Velocys
  • 6.161. Versalis SpA
  • 6.162. Wastefront
  • 6.163. Worn Again Technologies
  • 6.164. Xycle

7. GLOSSARY OF TERMS

8. REFERENCES

List of Tables

  • Table 1. Types of recycling
  • Table 2. Issues related to the use of plastics
  • Table 3. Type of biodegradation
  • Table 4. Overview of the recycling technologies
  • Table 5. Polymer types, use, and recovery
  • Table 6. Composition of plastic waste streams
  • Table 7. Comparison of mechanical and advanced chemical recycling
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution)
  • Table 10. Market drivers and trends in the advanced chemical recycling market
  • Table 11. Advanced chemical recycling industry news, funding and developments 2020-2023
  • Table 12. Advanced plastics recycling capacities, by technology
  • Table 13. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Table 14. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Table 15. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Table 16. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Table 17. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Table 18. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*
  • Table 19. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Table 20. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Table 21. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Table 22. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Table 23. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Table 24. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Table 25. Example chemically recycled plastic products
  • Table 26. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes
  • Table 27. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE)
  • Table 28. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP)
  • Table 29. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET)
  • Table 30. Plastic yield of each chemical recycling technologies
  • Table 31. Chemically recycled plastics prices in USD
  • Table 32. Challenges in the advanced chemical recycling market
  • Table 33. Applications of chemically recycled materials
  • Table 34. Summary of non-catalytic pyrolysis technologies
  • Table 35. Summary of catalytic pyrolysis technologies
  • Table 36. Summary of pyrolysis technique under different operating conditions
  • Table 37. Biomass materials and their bio-oil yield
  • Table 38. Biofuel production cost from the biomass pyrolysis process
  • Table 39. Pyrolysis companies and plant capacities, current and planned
  • Table 40. Summary of gasification technologies
  • Table 41. Advanced recycling (Gasification) companies
  • Table 42. Summary of dissolution technologies
  • Table 43. Advanced recycling (Dissolution) companies
  • Table 44. Depolymerisation processes for PET, PU, PC and PA, products and yields
  • Table 45. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 46. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 47. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 48. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers
  • Table 49. Summary of aminolysis technologies
  • Table 50. Advanced recycling (Depolymerisation) companies and capacities (current and planned)
  • Table 51. Overview of hydrothermal cracking for advanced chemical recycling
  • Table 52. Overview of Pyrolysis with in-line reforming for advanced chemical recycling
  • Table 53. Overview of microwave-assisted pyrolysis for advanced chemical recycling
  • Table 54. Overview of plasma pyrolysis for advanced chemical recycling
  • Table 55. Overview of plasma gasification for advanced chemical recycling
  • Table 56. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages
  • Table 57. Retention rate of tensile properties of recovered carbon fibres by different recycling processes
  • Table 58. Recycled carbon fiber producers, technology and capacity

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes
  • Figure 2. Coca-Cola PlantBottle®
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives
  • Figure 5. The circular plastic economy
  • Figure 6. Current management systems for waste plastics
  • Figure 7. Overview of the different circular pathways for plastics
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes)
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes)
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes)
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes)
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes)
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes)
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes)
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes)
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes)
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes)
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes)
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes)
  • Figure 20. Market map for advanced plastics recycling
  • Figure 21. Value chain for advanced plastics recycling market
  • Figure 22. Schematic layout of a pyrolysis plant
  • Figure 23. Waste plastic production pathways to (A) diesel and (B) gasoline
  • Figure 24. Schematic for Pyrolysis of Scrap Tires
  • Figure 25. Used tires conversion process
  • Figure 26. SWOT analysis-pyrolysis for advanced recycling
  • Figure 27. Total syngas market by product in MM Nm3/h of Syngas, 2021
  • Figure 28. Overview of biogas utilization
  • Figure 29. Biogas and biomethane pathways
  • Figure 30. SWOT analysis-gasification for advanced recycling
  • Figure 31. SWOT analysis-dissoluton for advanced recycling
  • Figure 32. Products obtained through the different solvolysis pathways of PET, PU, and PA
  • Figure 33. SWOT analysis-Hydrolysis for advanced chemical recycling
  • Figure 34. SWOT analysis-Enzymolysis for advanced chemical recycling
  • Figure 35. SWOT analysis-Methanolysis for advanced chemical recycling
  • Figure 36. SWOT analysis-Glycolysis for advanced chemical recycling
  • Figure 37. SWOT analysis-Aminolysis for advanced chemical recycling
  • Figure 38. NewCycling process
  • Figure 39. ChemCyclingTM prototypes
  • Figure 40. ChemCycling circle by BASF
  • Figure 41. Recycled carbon fibers obtained through the R3FIBER process
  • Figure 42. Cassandra Oil process
  • Figure 43. CuRe Technology process
  • Figure 44. MoReTec
  • Figure 45. Chemical decomposition process of polyurethane foam
  • Figure 46. OMV ReOil process
  • Figure 47. Schematic Process of Plastic Energy's TAC Chemical Recycling
  • Figure 48. Easy-tear film material from recycled material
  • Figure 49. Polyester fabric made from recycled monomers
  • Figure 50. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right)
  • Figure 51. Teijin Frontier Co., Ltd. Depolymerisation process
  • Figure 52. The Velocys process
  • Figure 53. The Proesa® Process
  • Figure 54. Worn Again products
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!