Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1765475

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1765475

The Global Synthetic Biology (SynBio) Market 2026-2036

PUBLISHED:
PAGES: 480 Pages, 133 Tables, 70 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 1540

Add to Cart

The global synthetic biology market represents one of the most transformative and rapidly expanding sectors in modern biotechnology, fundamentally reshaping how we approach medicine, agriculture, manufacturing, and environmental challenges. Valued at approximately $16-18 billion in 2024, the market is projected to experience explosive growth, driven by advances in genetic engineering, computational design, and automated biological systems.

The synthetic biology market is experiencing robust growth at a compound annual growth rate (CAGR) of 20.6-28.63%, fueled by several converging factors. The dramatic reduction in DNA sequencing and synthesis costs has democratized access to genetic engineering tools, while artificial intelligence and machine learning algorithms have accelerated the design of biological systems. Rising demand for bio-based products, growing demand for personalized therapies, and advancements in DNA sequencing and synthesis technologies are key factors accelerating market growth.

The pharmaceutical and healthcare sector dominates the market landscape. This dominance stems from synthetic biology's impact on drug discovery, personalized medicine, and therapeutic development. The technology enables the creation of novel biologics, synthetic vaccines, and engineered cell therapies that address previously untreatable conditions.

Despite remarkable growth prospects, the synthetic biology market faces several challenges. Regulatory uncertainty remains a significant barrier, as existing frameworks struggle to keep pace with rapid technological advancement. Public acceptance and ethical concerns surrounding genetic engineering applications require ongoing attention and transparent communication about benefits and risks. Technical challenges include scaling laboratory innovations to industrial production, ensuring reliability and predictability of engineered biological systems, and developing standardized tools and methodologies. The complexity of biological systems continues to present engineering challenges that require sustained research and development investment.

The synthetic biology market represents a paradigm shift toward programmable biology, where engineered biological systems address global challenges in healthcare, food security, climate change, and sustainable manufacturing. As the technology matures and costs continue to decline, synthetic biology is poised to become a cornerstone of the 21st-century bioeconomy, creating unprecedented opportunities for innovation and economic growth while addressing humanity's most pressing challenges.

"The Global Synthetic Biology (Synbio) Market 2026-2036" represents the most comprehensive analysis of one of biotechnology's fastest-growing sectors, providing essential intelligence for investors, industry leaders, and strategic planners. This definitive market report delivers critical insights into the transformative synthetic biology landscape, covering market dynamics, technological innovations, competitive positioning, and growth opportunities across key application areas including pharmaceuticals, agriculture, industrial biotechnology, and environmental solutions.

Report contents include:

  • Technology-based revenue projections
  • Product type market dynamics (oligonucleotides, enzymes, synthetic genes, synthetic cells)
  • Regional market opportunities across North America, Europe, Asia-Pacific, and emerging markets
  • Application-specific growth drivers spanning 13 major industry verticals
  • Advanced biomanufacturing analysis encompasses:
    • Batch versus continuous bioprocessing optimization
    • Cell-free synthesis systems and scalability challenges
    • Fermentation process innovations and efficiency improvements
    • Biofilm-based production and microfluidic manufacturing systems
    • Photobioreactor technologies and membrane bioreactor applications
  • Markets & Applications:
    • Biofuels & Energy: Bioethanol, biodiesel, biogas, renewable diesel, biojet fuel, and hydrogen production
    • Bio-based Chemicals: Industrial chemicals, specialty chemicals, and sustainable chemical manufacturing
    • Bioplastics & Biopolymers: PLA, PHA, bio-PET, and next-generation biodegradable materials
    • Healthcare & Pharmaceuticals: Drug discovery, gene therapy, vaccine production, personalized medicine
    • Agriculture & Food: Crop enhancement, biofertilizers, biopesticides, alternative proteins
    • Textiles & Materials: Bio-based fibers, sustainable leather alternatives, mycelium materials
    • Environmental Solutions: Bioremediation, carbon capture, pollution control technologies
  • Regional Market Analysis & Growth Opportunities
  • Competitive Landscape & Company Profiles. The report features comprehensive profiles of 320+ leading synthetic biology companies, providing detailed analysis of business models, product portfolios, financial performance, and strategic positioning. Our competitive intelligence covers established biotechnology leaders, emerging startups, and technology platform providers across the synthetic biology value chain. Companies profiled include Aanika Biosciences, Aemetis Inc., AEP Polymers, Afyren, AgBiome, AgriSea NZ Seaweed Ltd, Agrivida, Ainnocence, AIO, AI Proteins, Algal Bio Co. Ltd., Algenol, AlgiKnit, Algiecel ApS, Alpha Biofuels Singapore Pte Ltd, Allonnia LLC, Allozymes, Alt.Leather, Alto Neuroscience, Amano Enzyme Inc., AmphiStar, Amply Discovery, AMSilk GmbH, Amyris, Andes Ag Inc., Ansa Biotechnologies, Antheia, Apeel Sciences, Aralez Bio, Arctic Biomaterials Oy, Ardra Bio, Arkeon, Arsenale Bioyards, Arzeda, Asimov, Atantares, Autolus, AVA Biochem AG, Avantium B.V., Azolla, Axcelon Biopolymers Corporation, Basecamp Research, BBCA Biochemical & GALACTIC Lactic Acid Co. Ltd., Benefuel Inc., BioBetter, Bioextrax AB, Bio Fab NZ, Biokemik, BIOLO, Biomason Inc., Biomemory, Bioplastech Ltd, BioSmart Nano, Biotic Circular Technologies Ltd., Biosyntia, Biotecam, Bioweg, bit.bio, Bloom Biorenewables SA, BluCon Biotech GmbH, Blue BioFuels Inc., Bluepha Beijing Lanjing Microbiology Technology Co. Ltd., Bon Vivant, Bolt Threads, Bosk Bioproducts Inc., Bowil Biotech Sp. z o.o., Braskem SA, Brightseed, Bucha Bio Inc., C1 Green Chemicals AG, C16 Biosciences, CABIO Biotech Wuhan Co Ltd, California Cultured, Calysta, Camena Bioscience, Capra Biosciences, Carbios, Cargill, Calyxt, Cascade Biocatalysts, Cass Materials Pty Ltd, Catalyxx, Cathy Biotech Inc., Cauldron Ferm, Cemvita Factory Inc., ChainCraft, Checkerspot, Chitose Bio Evolution Pte Ltd., CinderBio, Circe, CJ Biomaterials Inc., Clean Food Group, Codagenix, Codexis, Colossal Biosciences, Colipi, Colorifix, Conagen, Constructive Bio, Cysbio, Danimer Scientific, Debut Biotechnology, Deep Branch Biotechnology, Demetrix, Dispersa, DMC Biotechnologies, DNA Script, Domsjo Fabriker AB, DoriNano, DuPont, Earli, Ecovative Design LLC, Eco Fuel Technology Inc, Eden Brew, EggPlant Srl, Eligo Bioscience, Elo Life Systems, Emerging Fuels Technology EFT, Enduro Genetics, EnginZyme AB, Eni S.p.A., EnPlusOne Biosciences, Enzymaster, Enzymit, Erebagen, Esphera SynBio, Euglena Co. Ltd., Eversyn, Evozyne, FabricNano, Fermentalg, eniferBio, ENOUGH, Epoch Biodesign, Evolved By Nature, Evonetix Limited, Evonik Industries AG, EV Biotech, Farmless, Fermelanta and more......
  • Investment Analysis & Market Forecasts: insights into funding trends, valuation metrics, and growth opportunities across synthetic biology segments. The report examines venture capital flows, public market performance, and strategic acquisition activity, delivering essential intelligence for investment decision-making.
  • Market sizing and growth projections through 2036
  • Technology readiness levels and commercialization timelines
  • Risk assessment and regulatory consideration
  • Strategic partnership opportunities and M&A activity
  • Technology Roadmap & Future Outlook
  • Future market outlook:
    • Emerging applications in space biotechnology and climate engineering
    • Convergence with artificial intelligence and nanotechnology
    • Regulatory evolution and standardization frameworks
    • Global market expansion and democratization trends

This essential market intelligence report serves as the definitive guide for understanding synthetic biology's transformative potential, providing actionable insights for strategic planning, investment decisions, and market positioning in one of biotechnology's most dynamic sectors.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Overview of the global synthetic biology market
  • 1.2. Difference between synthetic biology and genetic engineering
  • 1.3. Market size and growth projections
    • 1.3.1. By Technology
    • 1.3.2. By Product Type
    • 1.3.3. By Market
    • 1.3.4. By Region
  • 1.4. Major trends and drivers
  • 1.5. Investments in synthetic biology
  • 1.6. Technology roadmap
  • 1.7. Industrial biotechnology value chain

2. INTRODUCTION

  • 2.1. What is synthetic biology?
  • 2.2. Comparison with conventional processes
  • 2.3. Applications
  • 2.4. Advantages
  • 2.5. Sustainability
  • 2.6. Synthetic Biology for the Circular Economy

3. TECHNOLOGY ANALYSIS

  • 3.1. Biomanufacturing processes
    • 3.1.1. Batch biomanufacturing
    • 3.1.2. Continuous biomanufacturing
    • 3.1.3. Fermentation Processes
    • 3.1.4. Cell-free synthesis
    • 3.1.5. Biofilm-based production
    • 3.1.6. Microfluidic systems
    • 3.1.7. Photobioreactors
    • 3.1.8. Membrane bioreactors
    • 3.1.9. Plant cell culture
    • 3.1.10. Mammalian cell culture
    • 3.1.11. Bioprinting
  • 3.2. Cell factories for biomanufacturing
  • 3.3. Technology Overview
    • 3.3.1. Metabolic engineering
    • 3.3.2. Gene and DNA synthesis
    • 3.3.3. Gene Synthesis and Assembly
    • 3.3.4. Genome engineering
      • 3.3.4.1. CRISPR
        • 3.3.4.1.1. CRISPR/Cas9-modified biosynthetic pathways
        • 3.3.4.1.2. TALENs
        • 3.3.4.1.3. ZFNs
    • 3.3.5. Protein/Enzyme Engineering
    • 3.3.6. Synthetic genomics
      • 3.3.6.1. Principles of Synthetic Genomics
      • 3.3.6.2. Synthetic Chromosomes and Genomes
    • 3.3.7. Strain construction and optimization
    • 3.3.8. Smart bioprocessing
    • 3.3.9. Chassis organisms
    • 3.3.10. Biomimetics
    • 3.3.11. Sustainable materials
    • 3.3.12. Robotics and automation
      • 3.3.12.1. Robotic cloud laboratories
      • 3.3.12.2. Automating organism design
      • 3.3.12.3. Artificial intelligence and machine learning
    • 3.3.13. Bioinformatics and computational tools
      • 3.3.13.1. Role of Bioinformatics in Synthetic Biology
      • 3.3.13.2. Computational Tools for Design and Analysis
    • 3.3.14. Xenobiology and expanded genetic alphabets
    • 3.3.15. Biosensors and bioelectronics
    • 3.3.16. Feedstocks
      • 3.3.16.1. C1 feedstocks
        • 3.3.16.1.1. Advantages
        • 3.3.16.1.2. Pathways
        • 3.3.16.1.3. Challenges
        • 3.3.16.1.4. Non-methane C1 feedstocks
        • 3.3.16.1.5. Gas fermentation
      • 3.3.16.2. C2 feedstocks
      • 3.3.16.3. Biological conversion of CO2
      • 3.3.16.4. Food processing wastes
      • 3.3.16.5. Lignocellulosic biomass
      • 3.3.16.6. Syngas
      • 3.3.16.7. Glycerol
      • 3.3.16.8. Methane
      • 3.3.16.9. Municipal solid wastes
      • 3.3.16.10. Plastic wastes
      • 3.3.16.11. Plant oils
      • 3.3.16.12. Starch
      • 3.3.16.13. Sugars
      • 3.3.16.14. Used cooking oils
      • 3.3.16.15. Green hydrogen production
      • 3.3.16.16. Blue hydrogen production
    • 3.3.17. Marine biotechnology
      • 3.3.17.1. Cyanobacteria
      • 3.3.17.2. Macroalgae
      • 3.3.17.3. Companies

4. MARKET ANALYSIS

  • 4.1. Market trends and drivers
  • 4.2. Industry challenges and constraints
  • 4.3. Synthetic biology in the bioeconomy
  • 4.4. SWOT analysis
  • 4.5. Synthetic biology markets
    • 4.5.1. Biofuels
      • 4.5.1.1. Solid Biofuels
      • 4.5.1.2. Liquid Biofuels
      • 4.5.1.3. Gaseous Biofuels
      • 4.5.1.4. Conventional Biofuels
      • 4.5.1.5. Advanced Biofuels
      • 4.5.1.6. Feedstocks
        • 4.5.1.6.1. First-generation (1-G)
        • 4.5.1.6.2. Second-generation (2-G)
          • 4.5.1.6.2.1. Lignocellulosic wastes and residues
          • 4.5.1.6.2.2. Biorefinery lignin
        • 4.5.1.6.3. Third-generation (3-G)
          • 4.5.1.6.3.1. Algal biofuels
            • 4.5.1.6.3.1.1. Properties
            • 4.5.1.6.3.1.2. Advantages
        • 4.5.1.6.4. Fourth-generation (4-G)
        • 4.5.1.6.5. Energy crops
        • 4.5.1.6.6. Agricultural residues
        • 4.5.1.6.7. Manure, sewage sludge and organic waste
        • 4.5.1.6.8. Forestry and wood waste
        • 4.5.1.6.9. Feedstock costs
      • 4.5.1.7. Synthetic biology approaches for biofuel production
      • 4.5.1.8. Bioethanol
        • 4.5.1.8.1. Ethanol to jet fuel technology
        • 4.5.1.8.2. Methanol from pulp & paper production
        • 4.5.1.8.3. Sulfite spent liquor fermentation
        • 4.5.1.8.4. Gasification
          • 4.5.1.8.4.1. Biomass gasification and syngas fermentation
          • 4.5.1.8.4.2. Biomass gasification and syngas thermochemical conversion
        • 4.5.1.8.5. CO2 capture and alcohol synthesis
        • 4.5.1.8.6. Biomass hydrolysis and fermentation
        • 4.5.1.8.7. Separate hydrolysis and fermentation
          • 4.5.1.8.7.1. Simultaneous saccharification and fermentation (SSF)
          • 4.5.1.8.7.2. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
          • 4.5.1.8.7.3. Simultaneous saccharification and co-fermentation (SSCF)
          • 4.5.1.8.7.4. Direct conversion (consolidated bioprocessing) (CBP)
      • 4.5.1.9. Biodiesel
      • 4.5.1.10. Biogas
        • 4.5.1.10.1. Biomethane
        • 4.5.1.10.2. Feedstocks
        • 4.5.1.10.3. Anaerobic digestion
      • 4.5.1.11. Renewable diesel
      • 4.5.1.12. Biojet fuel
      • 4.5.1.13. Algal biofuels (blue biotech)
        • 4.5.1.13.1. Conversion pathways
        • 4.5.1.13.2. Market challenges
        • 4.5.1.13.3. Prices
        • 4.5.1.13.4. Producers
      • 4.5.1.14. Biohydrogen
        • 4.5.1.14.1. Biological Conversion Routes
          • 4.5.1.14.1.1. Bio-photochemical Reaction
          • 4.5.1.14.1.2. Fermentation and Anaerobic Digestion
      • 4.5.1.15. Biobutanol
      • 4.5.1.16. Bio-based methanol
        • 4.5.1.16.1. Anaerobic digestion
        • 4.5.1.16.2. Biomass gasification
        • 4.5.1.16.3. Power to Methane
      • 4.5.1.17. Bioisoprene
      • 4.5.1.18. Fatty Acid Esters
    • 4.5.2. Bio-based chemicals
      • 4.5.2.1. Acetic acid
      • 4.5.2.2. Adipic acid
      • 4.5.2.3. Aldehydes
      • 4.5.2.4. Acrylic acid
      • 4.5.2.5. Bacterial cellulose
      • 4.5.2.6. 1,4-Butanediol (BDO)
      • 4.5.2.7. Bio-DME
      • 4.5.2.8. Dodecanedioic acid (DDDA)
      • 4.5.2.9. Ethylene
      • 4.5.2.10. 3-Hydroxypropionic acid (3-HP)
      • 4.5.2.11. 1,3-Propanediol (1,3-PDO)
      • 4.5.2.12. Itaconic acid
      • 4.5.2.13. Lactic acid (D-LA)
      • 4.5.2.14. 1,5-diaminopentane (DA5)
      • 4.5.2.15. Tetrahydrofuran (THF)
      • 4.5.2.16. Malonic acid
      • 4.5.2.17. Monoethylene glycol (MEG)
      • 4.5.2.18. Propylene
      • 4.5.2.19. Succinic acid (SA)
      • 4.5.2.20. Triglycerides
      • 4.5.2.21. Enzymes
      • 4.5.2.22. Vitamins
      • 4.5.2.23. Antibiotics
    • 4.5.3. Bioplastics and Biopolymers
      • 4.5.3.1. Polylactic acid (PLA)
      • 4.5.3.2. PHAs
        • 4.5.3.2.1. Types
          • 4.5.3.2.1.1. PHB
          • 4.5.3.2.1.2. PHBV
        • 4.5.3.2.2. Synthesis and production processes
        • 4.5.3.2.3. Commercially available PHAs
      • 4.5.3.3. Bio-PET
      • 4.5.3.4. Starch blends
      • 4.5.3.5. Protein-based bioplastics
    • 4.5.4. Bioremediation
    • 4.5.5. Biocatalysis
      • 4.5.5.1. Biotransformations
      • 4.5.5.2. Cascade biocatalysis
      • 4.5.5.3. Co-factor recycling
      • 4.5.5.4. Immobilization
    • 4.5.6. Food and Nutraceutical Ingredients
      • 4.5.6.1. Alternative Proteins
      • 4.5.6.2. Natural Sweeteners
      • 4.5.6.3. Natural Flavors and Fragrances
      • 4.5.6.4. Texturants and Thickeners
      • 4.5.6.5. Nutraceuticals and Supplements
    • 4.5.7. Sustainable agriculture
      • 4.5.7.1. Crop Improvement and Trait Development
      • 4.5.7.2. Plant-Microbe Interactions and Symbiosis
      • 4.5.7.3. Biofertilizers
        • 4.5.7.3.1. Overview
        • 4.5.7.3.2. Companies
      • 4.5.7.4. Biopesticides
        • 4.5.7.4.1. Overview
        • 4.5.7.4.2. Companies
      • 4.5.7.5. Biostimulants
        • 4.5.7.5.1. Overview
        • 4.5.7.5.2. Companies
      • 4.5.7.6. Crop Biotechnology
        • 4.5.7.6.1. Genetic engineering
        • 4.5.7.6.2. Genome editing
        • 4.5.7.6.3. Companies
    • 4.5.8. Textiles
      • 4.5.8.1. Bio-Based Fibers
        • 4.5.8.1.1. Lyocell
        • 4.5.8.1.2. Bacterial cellulose
        • 4.5.8.1.3. Algae textiles
      • 4.5.8.2. Bio-based leather
        • 4.5.8.2.1. Properties of bio-based leathers
          • 4.5.8.2.1.1. Tear strength
          • 4.5.8.2.1.2. Tensile strength
          • 4.5.8.2.1.3. Bally flexing
        • 4.5.8.2.2. Comparison with conventional leathers
        • 4.5.8.2.3. Comparative analysis of bio-based leathers
      • 4.5.8.3. Plant-based leather
        • 4.5.8.3.1. Overview
        • 4.5.8.3.2. Production processes
          • 4.5.8.3.2.1. Feedstocks
          • 4.5.8.3.2.2. Agriculture Residues
          • 4.5.8.3.2.3. Food Processing Waste
          • 4.5.8.3.2.4. Invasive Plants
          • 4.5.8.3.2.5. Culture-Grown Inputs
          • 4.5.8.3.2.6. Textile-Based
          • 4.5.8.3.2.7. Bio-Composite
        • 4.5.8.3.3. Products
        • 4.5.8.3.4. Market players
      • 4.5.8.4. Mycelium leather
        • 4.5.8.4.1. Overview
        • 4.5.8.4.2. Production process
          • 4.5.8.4.2.1. Growth conditions
          • 4.5.8.4.2.2. Tanning Mycelium Leather
          • 4.5.8.4.2.3. Dyeing Mycelium Leather
        • 4.5.8.4.3. Products
        • 4.5.8.4.4. Market players
      • 4.5.8.5. Microbial leather
        • 4.5.8.5.1. Overview
        • 4.5.8.5.2. Production process
        • 4.5.8.5.3. Fermentation conditions
        • 4.5.8.5.4. Harvesting
        • 4.5.8.5.5. Products
        • 4.5.8.5.6. Market players
      • 4.5.8.6. Lab grown leather
        • 4.5.8.6.1. Overview
        • 4.5.8.6.2. Production process
        • 4.5.8.6.3. Products
        • 4.5.8.6.4. Market players
      • 4.5.8.7. Protein-based leather
        • 4.5.8.7.1. Overview
        • 4.5.8.7.2. Production process
        • 4.5.8.7.3. Commercial activity
      • 4.5.8.8. Recombinant Materials
      • 4.5.8.9. Sustainable Processing
    • 4.5.9. Packaging
      • 4.5.9.1. Polyhydroxyalkanoates (PHA)
      • 4.5.9.2. Applications
        • 4.5.9.2.1. Vials, bottles, and containers
        • 4.5.9.2.2. Disposable items and household goods
        • 4.5.9.2.3. Food packaging
        • 4.5.9.2.4. Wet wipes and diapers
      • 4.5.9.3. Proteins
      • 4.5.9.4. Algae-based
      • 4.5.9.5. Mycelium
      • 4.5.9.6. Antimicrobial films and agents
    • 4.5.10. Healthcare and Pharmaceuticals
      • 4.5.10.1. Drug discovery and development
      • 4.5.10.2. Gene therapy and regenerative medicine
      • 4.5.10.3. Vaccine production
      • 4.5.10.4. Personalized medicine
      • 4.5.10.5. Diagnostic tools and biosensors
      • 4.5.10.6. Companies
    • 4.5.11. Cosmetics
    • 4.5.12. Surfactants and detergents
    • 4.5.13. Construction materials
      • 4.5.13.1. Bioconcrete
      • 4.5.13.2. Microalgae biocement
      • 4.5.13.3. Mycelium materials
  • 4.6. Global market revenues 2018-2036
    • 4.6.1. By Technology
    • 4.6.2. By Product Type
    • 4.6.3. By Market
    • 4.6.4. By Region
  • 4.7. Future Market Outlook

5. COMPANY PROFILES (321 company profiles)

6. APPENDIX

  • 6.1. Research Methodology
  • 6.2. Glossary of Terms

7. REFERENCES

List of Tables

  • Table 1. Comparison of synthetic biology and genetic engineering
  • Table 2. Global Revenues for Synthetic Biology by Technology, 2018-2036 (Billion USD)
  • Table 3. Global Revenues for Synthetic Biology by Product Type, 2018-2036 (Billion USD)
  • Table 4. Global revenues for synthetic biology, by market, 2018-2036 (Billion USD)
  • Table 5. Global revenues for synthetic biology, by region, 2018-2036 (Billion USD)
  • Table 6. Major trends and drivers in synthetic biology
  • Table 7. Investments in synthetic biology
  • Table 8. Phase 1: Foundation & Optimization (2025-2027)
  • Table 9. Phase 2: Integration & Scale (2028-2030)
  • Table 10. Phase 3: Transformation & Convergence (2031-2033)
  • Table 11. Phase 4: Maturation & Optimization (2034-2036)
  • Table 12. Differences between synthetic biology and conventional processes
  • Table 13. Main application areas for synthetic biology
  • Table 14. Advantages of synthetic biology
  • Table 15. Key biomanufacturing processes utilized in synthetic biology
  • Table 16. Molecules produced through industrial biomanufacturing
  • Table 17. Continuous vs batch biomanufacturing
  • Table 18. Key fermentation parameters in batch vs continuous biomanufacturing processes
  • Table 19. Synthetic biology fermentation processes
  • Table 20. Cell-free versus cell-based systems
  • Table 21. Comparison of the biomanufacturing processes in synthetic biology
  • Table 22. Major microbial cell factories used in industrial biomanufacturing
  • Table 23. Core stages - Design, Build and Test
  • Table 24. Key tools and techniques used in metabolic engineering for pathway optimization
  • Table 25. Key applications of metabolic engineering
  • Table 26. Main DNA synthesis technologies
  • Table 27. Main gene assembly methods
  • Table 28. Key applications of genome engineering
  • Table 29. Engineered proteins in industrial applications
  • Table 30.Key computational tools and their applications in synthetic biology
  • Table 31. Feedstocks for synthetic biology
  • Table 32. Products from C1 feedstocks in white biotechnology
  • Table 33. C2 Feedstock Products
  • Table 34. CO2 derived products via biological conversion-applications, advantages and disadvantages
  • Table 35. Production capacities of biorefinery lignin producers
  • Table 36. Common starch sources that can be used as feedstocks for producing biochemicals
  • Table 37. Biomass processes summary, process description and TRL
  • Table 38. Pathways for hydrogen production from biomass
  • Table 39. Overview of alginate-description, properties, application and market size
  • Table 40. Blue biotechnology companies
  • Table 41. Market trends and drivers in synthetic biology
  • Table 42. Industry challenges and restraints in synthetic biology
  • Table 43. Key markets and applications for synthetic biology
  • Table 44. Comparison of biofuels
  • Table 45. Categories and examples of solid biofuel
  • Table 46. Comparison of biofuels and e-fuels to fossil and electricity
  • Table 47. Classification of biomass feedstock
  • Table 48. Biorefinery feedstocks
  • Table 49. Feedstock conversion pathways
  • Table 50. First-Generation Feedstocks
  • Table 51. Lignocellulosic ethanol plants and capacities
  • Table 52. Comparison of pulping and biorefinery lignins
  • Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes
  • Table 54. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol
  • Table 55. Properties of microalgae and macroalgae
  • Table 56. Yield of algae and other biodiesel crops
  • Table 57. Processes in bioethanol production
  • Table 58. Microorganisms used in CBP for ethanol production from biomass lignocellulosic
  • Table 59. Biodiesel by generation
  • Table 60. Biodiesel production techniques
  • Table 61. Biofuel production cost from the biomass pyrolysis process
  • Table 62. Biogas feedstocks
  • Table 63. Advantages and disadvantages of Bio-aviation fuel
  • Table 64. Production pathways for Bio-aviation fuel
  • Table 65. Current and announced Bio-aviation fuel facilities and capacities
  • Table 66. Algae-derived biofuel producers
  • Table 67. Markets and applications for biohydrogen
  • Table 68. Comparison of different Bio-H2 production pathways
  • Table 69. Properties of petrol and biobutanol
  • Table 70. Comparison of biogas, biomethane and natural gas
  • Table 71. Biobased chemicals that can be produced using synthetic biology approaches
  • Table 72. Applications of bio-based caprolactam
  • Table 73. Applications of bio-based acrylic acid
  • Table 74. Applications of bio-based 1,4-Butanediol (BDO)
  • Table 75. Applications of bio-based ethylene
  • Table 76. Biobased feedstock sources for 3-HP
  • Table 77. Applications of 3-HP
  • Table 78. Applications of bio-based 1,3-Propanediol (1,3-PDO)
  • Table 79. Biobased feedstock sources for itaconic acid
  • Table 80. Applications of bio-based itaconic acid
  • Table 81. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5)
  • Table 82. Applications of DN5
  • Table 83. Applications of bio-based Tetrahydrofuran (THF)
  • Table 84. Markets and applications for malonic acid
  • Table 85. Biobased feedstock sources for MEG
  • Table 86. Applications of bio-based MEG
  • Table 87. Applications of bio-based propylene
  • Table 88. Biobased feedstock sources for Succinic acid
  • Table 89. Applications of succinic acid
  • Table 90. Bioplastics and bioplastic precursors synthesized via white biotechnology processes
  • Table 91. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
  • Table 92. PLA producers and production capacities
  • Table 93.Types of PHAs and properties
  • Table 94. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
  • Table 95. Polyhydroxyalkanoate (PHA) extraction methods
  • Table 96. Commercially available PHAs
  • Table 97. Types of protein based-bioplastics, applications and companies
  • Table 98. Applications of white biotechnology in bioremediation and environmental remediation
  • Table 99. Companies developing fermentation-derived food
  • Table 100. Biofertilizer companies
  • Table 101. Biopesticides companies
  • Table 102. Biostimulants companies
  • Table 103. Crop biotechnology companies
  • Table 104. Types of sustainable alternative leathers
  • Table 105. Properties of bio-based leathers
  • Table 106. Comparison with conventional leathers
  • Table 107. Price of commercially available sustainable alternative leather products
  • Table 108. Comparative analysis of sustainable alternative leathers
  • Table 109. Key processing steps involved in transforming plant fibers into leather materials
  • Table 110. Current and emerging plant-based leather products
  • Table 111. Companies developing plant-based leather products
  • Table 112. Overview of mycelium-description, properties, drawbacks and applications
  • Table 113. Companies developing mycelium-based leather products
  • Table 114. Types of microbial-derived leather alternative
  • Table 115. Companies developing microbial leather products
  • Table 116. Companies developing plant-based leather products
  • Table 117. Types of protein-based leather alternatives
  • Table 118. Companies developing protein based leather
  • Table 119. Applications, advantages and disadvantages of PHAs in packaging
  • Table 120. Types of protein based-bioplastics, applications and companies
  • Table 121. Overview of alginate-description, properties, application and market size
  • Table 122. Pharmaceutical applications of synthetic biology
  • Table 123. companies involved in synthetic biology for gene therapy and regenerative medicine
  • Table 124. Companies involved in synthetic biology for vaccine production
  • Table 125. Companies involved in synthetic biology for personalized medicine
  • Table 126. Synthetic biology companies in healthcare and pharmaceuticals
  • Table 127. Applications of biotechnology in the cosmetics industry
  • Table 128. Sustainable biomanufacturing of surfactants and detergents
  • Table 129. Global Revenues for Synthetic Biology by Technology, 2018-2036 (Billion USD)
  • Table 130. Global Revenues for Synthetic Biology by Product Type, 2018-2036 (Billion USD)
  • Table 131. Global revenues for synthetic biology, by market, 2018-2036 (Billion USD)
  • Table 132. Global revenues for synthetic biology, by region, 2018-2036 (Billion USD)
  • Table 133. Glossary of Terms

List of Figures

  • Figure 1. Global Revenues for Synthetic Biology by Technology, 2018-2036 (Billion USD)
  • Figure 2. Global Revenues for Synthetic Biology by Product Type, 2018-2036 (Billion USD)
  • Figure 3. Global revenues for synthetic biology, by market, 2018-2036 (Billion USD)
  • Figure 4. Global revenues for synthetic biology, by region, 2018-2036 (Billion USD)
  • Figure 6. Industrial biotechnology value chain
  • Figure 7. Cell-free and cell-based protein synthesis systems
  • Figure 8. CRISPR/Cas9 & Targeted Genome Editing
  • Figure 9. Genetic Circuit-Assisted Smart Microbial Engineering
  • Figure 10. Microbial Chassis Development for Natural Product Biosynthesis
  • Figure 11. LanzaTech gas-fermentation process
  • Figure 12. Schematic of biological CO2 conversion into e-fuels
  • Figure 13. Overview of biogas utilization
  • Figure 14. Biogas and biomethane pathways
  • Figure 15. Schematic overview of anaerobic digestion process for biomethane production
  • Figure 16. BLOOM masterbatch from Algix
  • Figure 17. SWOT analysis: synthetic biology
  • Figure 18. Schematic of a biorefinery for production of carriers and chemicals
  • Figure 19. Range of biomass cost by feedstock type
  • Figure 20. Overview of biogas utilization
  • Figure 21. Biogas and biomethane pathways
  • Figure 22. Schematic overview of anaerobic digestion process for biomethane production
  • Figure 23. Algal biomass conversion process for biofuel production
  • Figure 24. Pathways for algal biomass conversion to biofuels
  • Figure 25. Biobutanol production route
  • Figure 26. Renewable Methanol Production Processes from Different Feedstocks
  • Figure 27. Production of biomethane through anaerobic digestion and upgrading
  • Figure 28. Production of biomethane through biomass gasification and methanation
  • Figure 29. Production of biomethane through the Power to methane process
  • Figure 30. Overview of Toray process
  • Figure 31. Bacterial nanocellulose shapes
  • Figure 32. PHA family
  • Figure 33. AlgiKicks sneaker, made with the Algiknit biopolymer gel
  • Figure 34. Conceptual landscape of next-gen leather materials
  • Figure 35. Hermes bag made of MycoWorks' mycelium leather
  • Figure 36. Ganni blazer made from bacterial cellulose
  • Figure 37. Bou Bag by GANNI and Modern Synthesis
  • Figure 38. Paper cups lined with home-compostable PHA
  • Figure 39. Amorphous PHA Cosmetics Jar
  • Figure 40. Types of bio-based materials used for antimicrobial food packaging application
  • Figure 41. Self-healing bacteria crack filler for concrete
  • Figure 42. BioMason cement
  • Figure 43. Microalgae based biocement masonry bloc
  • Figure 44. Typical structure of mycelium-based foam
  • Figure 45. Commercial mycelium composite construction materials
  • Figure 46. Global Revenues for Synthetic Biology by Technology, 2018-2036 (Billion USD)
  • Figure 47. Global Revenues for Synthetic Biology by Product Type, 2018-2036 (Billion USD)
  • Figure 48. Global revenues for synthetic biology, by market, 2018-2036 (Billion USD)
  • Figure 49. Global revenues for synthetic biology, by region, 2018-2036 (Billion USD)
  • Figure 50. Jelly-like seaweed-based nanocellulose hydrogel
  • Figure 51. Algiknit yarn
  • Figure 52. ALGIECEL PhotoBioReactor
  • Figure 53. BIOLO e-commerce mailer bag made from PHA
  • Figure 54. Domsjo process
  • Figure 55. Mushroom leather
  • Figure 56. PHA production process
  • Figure 57. Light Bio Bioluminescent plants
  • Figure 58. Lignin gel
  • Figure 59. BioFlex process
  • Figure 60. TransLeather
  • Figure 61. Reishi
  • Figure 62. Compostable water pod
  • Figure 63. Precision Photosynthesis(TM) technology
  • Figure 64. Enfinity cellulosic ethanol technology process
  • Figure 65. Fabric consisting of 70 per cent wool and 30 per cent Qmilk
  • Figure 66. Lyocell process
  • Figure 67. Spider silk production
  • Figure 68. Corbion FDCA production process
  • Figure 69. UPM biorefinery process
  • Figure 70. The Proesa-R Process
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!