PUBLISHER: Global Market Insights Inc. | PRODUCT CODE: 1858798
PUBLISHER: Global Market Insights Inc. | PRODUCT CODE: 1858798
The Global Automotive Radar-on-Chip Solution Market was valued at USD 3.3 billion in 2024 and is estimated to grow at a CAGR of 14.1% to reach USD 12 billion by 2034.

Growing focus on road safety and the rise of regulatory mandates surrounding advanced driver-assistance systems (ADAS) directly driving demand for radar-on-chip technologies. As vehicles increasingly shift toward automation and intelligent driving features, these compact radar solutions offer enhanced detection capabilities for collision avoidance, adaptive cruise control, and traffic assistance. Consumers are pushing automakers to deliver high-performance safety systems that operate efficiently in real-world driving conditions, making radar-on-chip integration essential. These chip-level radar systems allow software-defined functionality while minimizing size, energy consumption, and system weight, key elements in electric vehicle (EV) adoption. Manufacturers are under pressure to meet safety benchmarks without impacting EV performance or range, encouraging the widespread adoption of RoC solutions. As global initiatives for higher vehicle autonomy progress, the need for high-precision, low-latency radar sensing systems becomes even more critical. These solutions support functionalities such as automated lane management and obstacle detection under poor visibility, helping to set the foundation for fully autonomous driving environments.
| Market Scope | |
|---|---|
| Start Year | 2024 |
| Forecast Year | 2025-2034 |
| Start Value | $3.3 Billion |
| Forecast Value | $12 Billion |
| CAGR | 14.1% |
In 2024, the hardware segment accounted for a 62.4% share and is forecasted to grow at a CAGR of 14.6% through 2034. Hardware leads this space as it includes the integrated RF front-end, antennas, and digital signal processors essential for radar operation. The trend is toward highly integrated single-chip architectures that merge multiple components into a compact form factor. Automotive radar hardware is also transitioning to multi-band and multi-channel capabilities operating across 24, 77, and 79 GHz, offering improved resolution, expanded range, and robust performance across all driving scenarios.
The 77 GHz segment held a 58% share in 2024 and is projected to grow at a CAGR of 13.9% through 2034. These radar-on-chip solutions are setting the benchmark for long-range applications in ADAS and autonomous vehicle platforms. Known for delivering higher resolution, extended detection range, and minimal interference, 77 GHz radar technology is now the go-to frequency for next-generation automotive radar systems.
US Automotive Radar-on-Chip Solution Market held an 86.6% share, generating USD 601 million in 2024. The country's strong foothold in semiconductor innovation, paired with rapid adoption of ADAS features and autonomous vehicle development, drives this leadership. From compact cars to luxury models, vehicles in the US now come equipped with radar-enabled systems that offer adaptive cruise control, emergency braking, and lane assistance. As demand grows for AI-driven, high-resolution radar modules capable of real-time perception, the push for sophisticated 77 GHz multi-channel radar-on-chip solutions continues to accelerate.
Key companies in the Automotive Radar-on-Chip Solution Market are Robert Bosch, ZF Friedrichshafen, Texas Instruments (TI), Infineon Technologies, Continental, Renesas Electronics, and NXP Semiconductors. Leading players in the Automotive Radar-on-Chip Solution Market are heavily investing in R&D to miniaturize hardware while improving performance through advanced signal processing and AI-driven algorithms. Companies are focusing on developing scalable platforms that support multi-band radar operation and integrate with broader ADAS architectures. Strategic partnerships with OEMs enable co-development of radar modules customized for specific vehicle classes. Many firms are also optimizing chipsets to align with EV architectures by reducing energy consumption without compromising accuracy.