Cover Image
Market Research Report
Product code 
1037170

Hydrogen Generation Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021-2026

Published: | IMARC Services Private Limited | 144 Pages | Delivery time: 2-3 business days

Price

Back to Top
Hydrogen Generation Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2021-2026
Published: November 10, 2021
IMARC Services Private Limited
Content info: 144 Pages
Delivery time: 2-3 business days
  • Description
  • Table of Contents

The global hydrogen generation market reached a value of US$ 122.6 Billion in 2020. Looking forward, IMARC Group expects the market to grow at a CAGR of 5.5% during 2021-2026. Keeping in mind the uncertainties of COVID-19, we are continuously tracking and evaluating the direct as well as the indirect influence of the pandemic on different end use industries. These insights are included in the report as a major market contributor.

Hydrogen can be generated using different processes and diverse resources. For instance, the thermochemical process requires the utilization of fossil fuels to release hydrogen, while in other processes, water is split into hydrogen and oxygen via electrolysis or solar energy. At present, new methods are being introduced using bacteria and algae, which are also economical, efficient, and environment friendly. Nowadays, the demand for hydrogen generation is escalating in refining petroleum, treating metals, producing fertilizers, and processing food products. Besides this, it is also gaining traction as a fuel in electric vehicles (EVs) worldwide.

The rising energy demand, in confluence with the growing environmental concerns, represents one of the main factors fueling the need for sustainable energy sources like hydrogen. Moreover, governing authorities of numerous countries are implementing stringent regulations to reduce carbon emissions in the automotive sector, which is boosting the sales of EVs worldwide. This, in confluence with the extensive application of hydrogen as a coolant in power plant generators, is propelling the market growth. Apart from this, several projects are being funded to decrease costs as well as the environmental impacts of hydrogen production technologies. For instance, hydrogen generation using nuclear energy is considered an economical solution for minimizing carbon footprint and meeting the critical global climate challenge. This, in turn, is anticipated to catalyze the demand for hydrogen generation in glass purification, fertilizer production, and semiconductor manufacturing across the globe.

Key Market Segmentation:

  • IMARC Group provides an analysis of the key trends in each sub-segment of the global hydrogen generation market, along with forecasts at the global, regional and country level from 2021-2026. Our report has categorized the market based on technology, application and systems type.

Breakup by Technology:

  • Coal Gasification
  • Steam Methane Reforming
  • Others

Breakup by Application:

  • Methanol Production
  • Ammonia Production
  • Petroleum Refinery
  • Transportation
  • Power Generation
  • Others

Breakup by Systems Type:

  • Merchant
  • Captive

Breakup by Region:

  • North America
  • United States
  • Canada
  • Asia-Pacific
  • China
  • Japan
  • India
  • South Korea
  • Australia
  • Indonesia
  • Others
  • Europe
  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Russia
  • Others
  • Latin America
  • Brazil
  • Mexico
  • Others
  • Middle East and Africa

Competitive Landscape:

The competitive landscape of the industry has also been examined along with the profiles of the key players being Air Liquide International S.A., Air Products Inc, CLAIND srl, INOX Air Products Ltd., Linde plc, Mahler AGS GmbH, McPhy Energy S.A., Messer Group GmbH, NEL Hydrogen, Taiyo Nippon Sanso Corporation, Weldstar Inc. and Xebec Adsorption Inc. Key Questions Answered in This Report:

  • How has the global hydrogen generation market performed so far and how will it perform in the coming years?
  • What has been the impact of COVID-19 on the global hydrogen generation market?
  • What are the key regional markets?
  • What is the breakup of the market based on the technology?
  • What is the breakup of the market based on the application?
  • What is the breakup of the market based on the systems type?
  • What are the various stages in the value chain of the industry?
  • What are the key driving factors and challenges in the industry?
  • What is the structure of the global hydrogen generation market and who are the key players?
  • What is the degree of competition in the industry?
Product Code: SR1020G191_Report

Table of Contents

1 Preface

2 Scope and Methodology

  • 2.1 Objectives of the Study
  • 2.2 Stakeholders
  • 2.3 Data Sources
    • 2.3.1 Primary Sources
    • 2.3.2 Secondary Sources
  • 2.4 Market Estimation
    • 2.4.1 Bottom-Up Approach
    • 2.4.2 Top-Down Approach
  • 2.5 Forecasting Methodology

3 Executive Summary

4 Introduction

  • 4.1 Overview
  • 4.2 Key Industry Trends

5 Global Hydrogen Generation Market

  • 5.1 Market Overview
  • 5.2 Market Performance
  • 5.3 Impact of COVID-19
  • 5.4 Market Forecast

6 Market Breakup by Technology

  • 6.1 Coal Gasification
    • 6.1.1 Market Trends
    • 6.1.2 Market Forecast
  • 6.2 Steam Methane Reforming
    • 6.2.1 Market Trends
    • 6.2.2 Market Forecast
  • 6.3 Others
    • 6.3.1 Market Trends
    • 6.3.2 Market Forecast

7 Market Breakup by Application

  • 7.1 Methanol Production
    • 7.1.1 Market Trends
    • 7.1.2 Market Forecast
  • 7.2 Ammonia Production
    • 7.2.1 Market Trends
    • 7.2.2 Market Forecast
  • 7.3 Petroleum Refinery
    • 7.3.1 Market Trends
    • 7.3.2 Market Forecast
  • 7.4 Transportation
    • 7.4.1 Market Trends
    • 7.4.2 Market Forecast
  • 7.5 Power Generation
    • 7.5.1 Market Trends
    • 7.5.2 Market Forecast
  • 7.6 Others
    • 7.6.1 Market Trends
    • 7.6.2 Market Forecast

8 Market Breakup by Systems Type

  • 8.1 Merchant
    • 8.1.1 Market Trends
    • 8.1.2 Market Forecast
  • 8.2 Captive
    • 8.2.1 Market Trends
    • 8.2.2 Market Forecast

9 Market Breakup by Region

  • 9.1 North America
    • 9.1.1 United States
      • 9.1.1.1 Market Trends
      • 9.1.1.2 Market Forecast
    • 9.1.2 Canada
      • 9.1.2.1 Market Trends
      • 9.1.2.2 Market Forecast
  • 9.2 Asia-Pacific
    • 9.2.1 China
      • 9.2.1.1 Market Trends
      • 9.2.1.2 Market Forecast
    • 9.2.2 Japan
      • 9.2.2.1 Market Trends
      • 9.2.2.2 Market Forecast
    • 9.2.3 India
      • 9.2.3.1 Market Trends
      • 9.2.3.2 Market Forecast
    • 9.2.4 South Korea
      • 9.2.4.1 Market Trends
      • 9.2.4.2 Market Forecast
    • 9.2.5 Australia
      • 9.2.5.1 Market Trends
      • 9.2.5.2 Market Forecast
    • 9.2.6 Indonesia
      • 9.2.6.1 Market Trends
      • 9.2.6.2 Market Forecast
    • 9.2.7 Others
      • 9.2.7.1 Market Trends
      • 9.2.7.2 Market Forecast
  • 9.3 Europe
    • 9.3.1 Germany
      • 9.3.1.1 Market Trends
      • 9.3.1.2 Market Forecast
    • 9.3.2 France
      • 9.3.2.1 Market Trends
      • 9.3.2.2 Market Forecast
    • 9.3.3 United Kingdom
      • 9.3.3.1 Market Trends
      • 9.3.3.2 Market Forecast
    • 9.3.4 Italy
      • 9.3.4.1 Market Trends
      • 9.3.4.2 Market Forecast
    • 9.3.5 Spain
      • 9.3.5.1 Market Trends
      • 9.3.5.2 Market Forecast
    • 9.3.6 Russia
      • 9.3.6.1 Market Trends
      • 9.3.6.2 Market Forecast
    • 9.3.7 Others
      • 9.3.7.1 Market Trends
      • 9.3.7.2 Market Forecast
  • 9.4 Latin America
    • 9.4.1 Brazil
      • 9.4.1.1 Market Trends
      • 9.4.1.2 Market Forecast
    • 9.4.2 Mexico
      • 9.4.2.1 Market Trends
      • 9.4.2.2 Market Forecast
    • 9.4.3 Others
      • 9.4.3.1 Market Trends
      • 9.4.3.2 Market Forecast
  • 9.5 Middle East and Africa
    • 9.5.1 Market Trends
    • 9.5.2 Market Breakup by Country
    • 9.5.3 Market Forecast

10 SWOT Analysis

  • 10.1 Overview
  • 10.2 Strengths
  • 10.3 Weaknesses
  • 10.4 Opportunities
  • 10.5 Threats

11 Value Chain Analysis

12 Porters Five Forces Analysis

  • 12.1 Overview
  • 12.2 Bargaining Power of Buyers
  • 12.3 Bargaining Power of Suppliers
  • 12.4 Degree of Competition
  • 12.5 Threat of New Entrants
  • 12.6 Threat of Substitutes

13 Price Analysis

14 Competitive Landscape

  • 14.1 Market Structure
  • 14.2 Key Players
  • 14.3 Profiles of Key Players
    • 14.3.1 Air Liquide International S.A.
      • 14.3.1.1 Company Overview
      • 14.3.1.2 Product Portfolio
    • 14.3.2 Air Products Inc
      • 14.3.2.1 Company Overview
      • 14.3.2.2 Product Portfolio
      • 14.3.2.3 Financials
      • 14.3.2.4 SWOT Analysis
    • 14.3.3 CLAIND srl
      • 14.3.3.1 Company Overview
      • 14.3.3.2 Product Portfolio
      • 14.3.3.3 Financials
    • 14.3.4 INOX Air Products Ltd.
      • 14.3.4.1 Company Overview
      • 14.3.4.2 Product Portfolio
    • 14.3.5 Linde plc
      • 14.3.5.1 Company Overview
      • 14.3.5.2 Product Portfolio
    • 14.3.6 Mahler AGS GmbH
      • 14.3.6.1 Company Overview
      • 14.3.6.2 Product Portfolio
    • 14.3.7 McPhy Energy S.A.
      • 14.3.7.1 Company Overview
      • 14.3.7.2 Product Portfolio
      • 14.3.7.3 Financials
    • 14.3.8 Messer Group GmbH
      • 14.3.8.1 Company Overview
      • 14.3.8.2 Product Portfolio
      • 14.3.8.3 Financials
    • 14.3.9 NEL Hydrogen
      • 14.3.9.1 Company Overview
      • 14.3.9.2 Product Portfolio
      • 14.3.9.3 Financials
    • 14.3.10 Taiyo Nippon Sanso Corporation
      • 14.3.10.1 Company Overview
      • 14.3.10.2 Product Portfolio
    • 14.3.11 Weldstar Inc.
      • 14.3.11.1 Company Overview
      • 14.3.11.2 Product Portfolio
    • 14.3.12 Xebec Adsorption Inc.
      • 14.3.12.1 Company Overview
      • 14.3.12.2 Product Portfolio
      • 14.3.12.3 Financials