Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1855671

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1855671

Offshore Wind Turbine Market by Turbine Capacity, Foundation Type, Component, Water Depth - Global Forecast 2025-2032

PUBLISHED:
PAGES: 196 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Offshore Wind Turbine Market is projected to grow by USD 83.52 billion at a CAGR of 9.92% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 39.18 billion
Estimated Year [2025] USD 43.15 billion
Forecast Year [2032] USD 83.52 billion
CAGR (%) 9.92%

An authoritative orientation to the offshore wind turbine ecosystem that clarifies technical, regulatory, and supply chain forces shaping strategic decisions by industry leaders

The offshore wind turbine sector is undergoing a rapid phase of strategic reorientation, as technological advancements, policy shifts, and evolving supply chain dynamics converge to redefine project fundamentals. Developers, OEMs, and investors are navigating a landscape where turbine scale, foundation innovation, and component modularity determine competitiveness. This introduction situates the reader within the current operational and commercial context, emphasizing how project timelines, procurement strategies, and stakeholder collaboration must adapt to sustain momentum.

Over the short to medium term, decision-makers are balancing aggressive deployment ambitions with pragmatic risk mitigation. Key considerations include integration of larger turbines in deeper waters, selection of foundation types that match site bathymetry and geotechnical conditions, and the orchestration of global supply chains to secure blades, nacelles, and towers on predictable schedules. The narrative that follows highlights these vectors and frames the subsequent analysis, enabling readers to align capital planning, technical design choices, and policy engagement with emergent industry realities.

By foregrounding the interplay between technology, regulation, and supply chain resilience, this introduction prepares stakeholders to interpret granular insights on capacity segmentation, foundation and component differentiation, regional dynamics, and competitive positioning. It also underscores the importance of forward-looking procurement practices and collaborative project execution to realize the full potential of offshore wind as a durable source of clean energy.

A forward-looking synthesis of technological, logistical, and policy transformations that are redefining project selection, procurement, and deployment strategies across the offshore wind sector

The offshore wind landscape is experiencing transformative shifts driven by the scale of turbines, advances in foundation engineering, and the maturation of floating technologies that extend viable deployment into deeper waters. Turbine capacity trends are catalyzing design reconfiguration across the value chain, with larger units prompting renewed attention to drivetrain robustness, blade aerodynamics, and port infrastructure to handle heavier assemblies. Concurrently, foundation evolution from traditional monopile and gravity base solutions toward jacket structures and floating platforms is reshaping site selection criteria and installation logistics.

Supply chains are adjusting to support these technical evolutions, prioritizing modular manufacturing, component standardization, and enhanced logistics coordination to reduce lead times and installation risk. Policy environments in leading geographies continue to pivot toward long-term offtake certainty and local content incentives, incentivizing domestic industrial investment and skills development. Financial models are also evolving; lenders and insurers increasingly demand demonstrable mitigation strategies for technology risk, environmental impact, and supply chain concentration.

Taken together, these shifts create both complexity and opportunity. Project developers and technology providers that harness innovation in turbine capacity selection, foundation adaptability, and component lifecycle planning will be better positioned to optimize levelized cost trajectories and project performance. Moreover, cross-sector partnerships and integrated project delivery models are emerging as critical enablers for scaling offshore wind sustainably and efficiently.

A detailed appraisal of how 2025 tariffs have reshaped procurement, supply chain resilience, and domestic industrial responses with cascading effects on project timelines and contracts

The introduction of tariffs in the United States in 2025 has produced a compound set of effects across procurement dynamics, supplier strategy, and project economics that ripple through the global offshore wind industry. Elevated import duties on certain turbine components and raw materials have driven buyers to reassess supplier portfolios, accelerating conversations around nearshoring and the development of domestic manufacturing capabilities. This trend has altered negotiation dynamics, with buyers seeking longer-term commercial arrangements and risk-sharing mechanisms to stabilize pricing and delivery certainty.

From a supply chain perspective, tariffs have increased the cost sensitivity of sourcing decisions and intensified scrutiny of multi-tier supplier exposure. Contractors and OEMs have had to reconfigure logistics and inventory strategies to mitigate cost volatility and avoid schedule slippage. In some instances, tariff-driven margins have been absorbed through redesigns and alternative material specifications to preserve competitive pricing for projects. At the same time, tariffs have incentivized investment in local fabrication, welding capacity, and installation services, creating near-term capacity constraints as new facilities ramp up and workforce training accelerates.

Policy responses and industry adaptation have been pragmatic: developers renegotiate contracts to index certain cost components to prevailing trade measures, while investors demand enhanced transparency on tariff risk and mitigation plans. The cumulative effect has been a recalibration of procurement timelines, a strategic pivot toward supplier diversification, and an increased premium on supply chain visibility and contractual flexibility. These dynamics underscore the importance of proactive industrial policy and coordinated public-private investment to ensure that tariff impacts do not become enduring bottlenecks to deployment.

Critical segmentation analysis linking turbine capacity bands, foundation typologies, component roles, and water depth classifications to inform technology and procurement decisions

Segmentation insights reveal differentiated strategic priorities across capacity, foundation, component, and water depth parameters that influence technology choices and procurement pathways. When capacity is examined by categories that include up to 3 megawatt, 3 to 6 megawatt, and above 6 megawatt, it becomes clear that each capacity band maps to distinct engineering trade-offs, port requirements, and installation methodologies. Smaller units are often favored for nearshore or transitional sites where logistical simplicity and proven supply chains reduce execution risk, whereas mid-size turbines balance cost and output in conventional shallow deployments. The push into larger turbines above 6 megawatt is most relevant to developers targeting deeper sites and economies of scale, but it necessitates elevated focus on transportation infrastructure, crane capacity, and grid interconnection planning.

Foundation insights show that choices among floating, gravity base, jacket, and monopile solutions are driven by seabed conditions, water depth, and project economics. Within floating solutions, technology pathways such as semi-submersible, spar, and tension leg platforms offer distinct advantages and constraints related to motion control, mooring complexity, and suitability for deep waters where fixed foundations are impractical. Component segmentation across blade, nacelle, and tower emphasizes the need for coordinated lifecycle planning; blade manufacturing capacity and aerodynamic optimization, nacelle reliability and serviceability, and tower logistics each present unique technical and commercial levers. Water depth categories classified as deep, shallow, and transitional serve as fundamental determinants of foundation selection, installation approach, and long-term operations strategies, influencing both capital allocation and operational protocols.

Interpreting these segmentation dimensions in a holistic manner allows stakeholders to align procurement, design, and financing decisions with site-specific realities and technology readiness. It also highlights where targeted investment in port upgrades, fabrication facilities, and specialized vessel fleets can unlock new deployment opportunities while managing risk exposure across the project lifecycle.

A comparative regional synthesis that reveals where policy, industrial capability, and infrastructure readiness intersect to create differentiated pathways for offshore wind deployment

Regional dynamics are central to understanding where competitive advantage and bottlenecks will emerge in the offshore wind sector. In the Americas, policy commitments and utility procurement are stimulating new project pipelines, yet developers must navigate complex permitting processes, port modernization needs, and evolving local content expectations to translate ambition into executed projects. The region's emphasis on workforce development and domestic fabrication presents opportunities for suppliers that can rapidly scale and localize operations while adhering to stringent environmental assessments.

Europe, Middle East & Africa exhibits a diversity of market drivers: established northern European markets lead in technology maturity and supply chain sophistication, while emerging markets across southern Europe and selected coastal nations are progressing through initial leasing and pilot phases. In several jurisdictions, strong policy frameworks and long-standing industrial expertise support rapid technology iterations and cost reductions. Simultaneously, regions within this grouping face grid integration challenges and must reconcile existing maritime activities with expanding offshore energy footprints.

Asia-Pacific combines aggressive deployment targets, expanding manufacturing ecosystems, and significant coastal infrastructure investment. Governments in the region are leveraging industrial policy to capture higher value in the supply chain, with an emphasis on scaling blade and tower production as well as enhancing port and vessel capabilities. The interplay of local policy, capital availability, and rapidly maturing technical competencies means that Asia-Pacific will continue to exert considerable influence on global supply chain flows and technology standardization trends.

Taken together, these regional patterns underscore the need for tailored commercial strategies and policy engagement plans that reflect local permitting regimes, industrial priorities, and infrastructure readiness while also accounting for cross-border supply chain interdependencies.

An incisive evaluation of competitive positioning, technological differentiation, and partnership strategies that determine commercial leadership and operational resilience in the sector

Competitive dynamics among industry participants are shaped by differentiation in technology portfolios, manufacturing footprint, and project execution capabilities. Leading turbine manufacturers are investing in larger rotor diameters, enhanced drivetrain reliability, and integrated service solutions to reduce downtime and operational risk. At the same time, foundation specialists are innovating across fixed and floating portfolios to improve installation efficiency and adaptability to diverse seabed conditions.

Service providers and logistics operators are increasingly offering integrated solutions that bundle O&M, spare parts management, and digital monitoring to provide lifecycle predictability. Strategic partnerships between OEMs, vessel operators, and local fabricators are becoming commonplace as a means of de-risking complex installations and meeting local content requirements. Capital providers and insurers are responding by placing a premium on demonstrable supply chain transparency, technology validation records, and comprehensive risk transfer mechanisms.

For stakeholders across the ecosystem, competitive advantage will come from combining technical excellence with scalable manufacturing and flexible commercial models. Firms that can offer end-to-end capabilities-from early-stage site assessment and engineering through to long-term servicing-will be best placed to win complex projects and achieve resilient revenue streams in an increasingly competitive environment.

Practical and high-impact recommendations for industrial investment, procurement resilience, and policy engagement to reduce execution risk and accelerate commercial deployment

Industry leaders should pursue a portfolio of pragmatic actions that align technical choices, procurement strategy, and stakeholder engagement to secure competitive advantage. First, accelerate investment in modular manufacturing and port upgrades to accommodate larger turbine components and reduce site mobilization time. This should be complemented by workforce development initiatives that provide targeted training for specialized fabrication and offshore operations roles.

Second, diversify supplier ecosystems to reduce concentration risk and incorporate contractual mechanisms that share tariff and logistics exposure across parties. Where feasible, partner with local fabricators and service providers to meet policy expectations and shorten supply chains. Third, prioritize design-for-maintainability practices to optimize the total cost of ownership; selecting components and foundation types that simplify access and reduce scheduled downtime will materially influence operational outcomes. Fourth, embed rigorous scenario planning and supply chain visibility tools into procurement processes so that tariff changes, geopolitical shocks, or vessel availability issues can be modeled and mitigated in advance.

Finally, engage proactively with policymakers, port operators, and grid planners to align project timelines with regulatory windows and infrastructure upgrades. By executing a coordinated strategy that combines industrial investment, supplier diversification, and constructive policy engagement, companies can both reduce execution risk and capture the long-term benefits of scale in offshore wind development.

A rigorous multi-source research approach combining primary stakeholder interviews, technical analysis, and scenario exploration to produce actionable and verifiable industry insights

The research methodology underpinning this analysis draws on a multi-disciplinary approach that synthesizes technical literature, project documentation, supplier capability assessments, and stakeholder interviews. Primary inputs included structured discussions with developers, OEM engineers, foundation specialists, logistics providers, and financial institutions to capture first-hand perspectives on technology readiness, supply chain constraints, and contractual best practices. Secondary analysis incorporated engineering reports, regulatory filings, and publicly available project descriptions to validate technology pathways and installation approaches.

Qualitative triangulation was applied to reconcile differing stakeholder viewpoints, and scenario analysis was used to explore the implications of trade policy changes, such as the 2025 tariffs, on procurement timelines and industrial responses. Attention was paid to ensuring geographic representation across major regions and to differentiating insights according to capacity, foundation type, component role, and water depth. The methodology prioritized transparency in assumptions and sought to highlight areas of consensus and divergence among participants, enabling readers to understand both robust conclusions and points that require further monitoring or verification.

Limitations included variability in proprietary project data and the evolving nature of policy and tariff environments; where necessary, the analysis emphasizes directional implications rather than prescriptive outcomes. Overall, the methodology supports actionable conclusions for industry stakeholders seeking to navigate the complex and rapidly changing offshore wind landscape.

A clear synthesis of technical and commercial imperatives demonstrating why integrated planning, industrial investment, and policy alignment are essential for sustainable offshore deployment

This executive summary synthesizes how technical innovation, supply chain adaptation, and policy shifts are collectively shaping the future trajectory of offshore wind turbine deployment. Key themes include the strategic implications of turbine capacity choices across smaller, mid-range, and larger units; the expanding relevance of diverse foundation types including floating technologies and their subcategories; and the critical role of component specialization across blades, nacelles, and towers in achieving operational reliability.

Regional differentiation remains a defining feature, with the Americas, Europe, Middle East & Africa, and Asia-Pacific each presenting unique combinations of policy ambition, industrial capability, and infrastructure readiness. In addition, trade measures implemented in 2025 have accelerated conversations about domestic industrialization and supply chain diversification, reinforcing the need for flexible contracting and proactive industrial policy to mitigate transitional frictions. The combined insights point to a sector that is increasingly professionalized, where project success depends on integrated planning across engineering, procurement, and commercial functions.

For decision-makers, the conclusion is clear: sustained progress in offshore wind will require coordinated investment in manufacturing and port infrastructure, strategic supplier partnerships, and continuous engagement with regulatory frameworks. Organizations that adopt these measures and remain adaptive to evolving technical and policy conditions will be best positioned to capture the long-term benefits of offshore wind deployment.

Product Code: MRR-62667ADF9789

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising adoption of floating offshore wind turbines in deepwater fields to harness stronger wind resources
  • 5.2. Integration of digital twin technology for predictive maintenance and performance optimization in wind farms
  • 5.3. Advances in high-capacity power export cables to minimize transmission losses from offshore turbines
  • 5.4. Implementation of bifacial wind turbine blades to increase energy capture in variable marine conditions
  • 5.5. Development of collaborative energy storage solutions to address intermittency challenges in offshore wind
  • 5.6. Modular substation platforms enabling faster offshore installation and reduced vessel dependency
  • 5.7. Growing focus on circular economy practices for blade recycling and material reuse in turbine manufacturing
  • 5.8. Emergence of hydrogen co-location projects utilizing offshore wind power for green hydrogen production
  • 5.9. Deployment of autonomous maintenance robotics to reduce O&M costs and improve turbine uptime
  • 5.10. Utilization of digital supply chain platforms to enhance logistics efficiency for offshore wind components

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Offshore Wind Turbine Market, by Turbine Capacity

  • 8.1. 3 To 6 Megawatt
  • 8.2. Above 6 Megawatt
  • 8.3. Up To 3 Megawatt

9. Offshore Wind Turbine Market, by Foundation Type

  • 9.1. Floating
    • 9.1.1. Semi-Submersible
    • 9.1.2. Spar
    • 9.1.3. Tension Leg Platform
  • 9.2. Gravity Base
  • 9.3. Jacket
  • 9.4. Monopile

10. Offshore Wind Turbine Market, by Component

  • 10.1. Blade
  • 10.2. Nacelle
  • 10.3. Tower

11. Offshore Wind Turbine Market, by Water Depth

  • 11.1. Deep
  • 11.2. Shallow
  • 11.3. Transitional

12. Offshore Wind Turbine Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Offshore Wind Turbine Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Offshore Wind Turbine Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Siemens Gamesa Renewable Energy, S.A.
    • 15.3.2. MHI Vestas Offshore Wind A/S
    • 15.3.3. GE Renewable Energy Ltd.
    • 15.3.4. Xinjiang Goldwind Science & Technology Co., Ltd.
    • 15.3.5. MingYang Smart Energy Group Co., Ltd.
    • 15.3.6. Shanghai Electric Group Co., Ltd.
    • 15.3.7. Shanghai Envision Energy Technology Co., Ltd.
    • 15.3.8. Doosan Heavy Industries & Construction Co., Ltd.
    • 15.3.9. China CSSC Offshore & Marine Engineering (Group) Co., Ltd.
    • 15.3.10. Senvion GmbH
Product Code: MRR-62667ADF9789

LIST OF FIGURES

  • FIGURE 1. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2024 VS 2032 (%)
  • FIGURE 3. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 4. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2024 VS 2032 (%)
  • FIGURE 5. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2024 VS 2032 (%)
  • FIGURE 7. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2024 VS 2032 (%)
  • FIGURE 9. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY REGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 11. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 12. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 13. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 14. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 15. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 16. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 17. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 18. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 19. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GROUP, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 20. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 21. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 22. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 23. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 24. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 25. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 26. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 27. OFFSHORE WIND TURBINE MARKET SHARE, BY KEY PLAYER, 2024
  • FIGURE 28. OFFSHORE WIND TURBINE MARKET, FPNV POSITIONING MATRIX, 2024

LIST OF TABLES

  • TABLE 1. OFFSHORE WIND TURBINE MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2024
  • TABLE 3. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, 2018-2024 (USD MILLION)
  • TABLE 4. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, 2025-2032 (USD MILLION)
  • TABLE 5. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 6. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 7. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY 3 TO 6 MEGAWATT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 8. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY 3 TO 6 MEGAWATT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 9. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY 3 TO 6 MEGAWATT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 10. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY 3 TO 6 MEGAWATT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 11. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY 3 TO 6 MEGAWATT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 12. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY 3 TO 6 MEGAWATT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 13. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY ABOVE 6 MEGAWATT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 14. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY ABOVE 6 MEGAWATT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 15. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY ABOVE 6 MEGAWATT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 16. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY ABOVE 6 MEGAWATT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 17. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY ABOVE 6 MEGAWATT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 18. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY ABOVE 6 MEGAWATT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 19. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY UP TO 3 MEGAWATT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 20. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY UP TO 3 MEGAWATT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 21. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY UP TO 3 MEGAWATT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 22. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY UP TO 3 MEGAWATT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 23. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY UP TO 3 MEGAWATT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 24. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY UP TO 3 MEGAWATT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 25. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 26. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 27. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 28. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 29. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 30. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 31. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 32. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 33. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 34. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 35. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SEMI-SUBMERSIBLE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 36. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SEMI-SUBMERSIBLE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 37. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SEMI-SUBMERSIBLE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 38. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SEMI-SUBMERSIBLE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 39. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SEMI-SUBMERSIBLE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 40. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SEMI-SUBMERSIBLE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 41. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SPAR, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 42. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SPAR, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 43. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SPAR, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 44. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SPAR, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 45. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SPAR, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 46. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SPAR, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 47. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TENSION LEG PLATFORM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 48. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TENSION LEG PLATFORM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 49. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TENSION LEG PLATFORM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 50. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TENSION LEG PLATFORM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 51. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TENSION LEG PLATFORM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 52. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TENSION LEG PLATFORM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 53. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GRAVITY BASE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 54. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GRAVITY BASE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 55. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GRAVITY BASE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 56. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GRAVITY BASE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 57. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GRAVITY BASE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 58. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GRAVITY BASE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 59. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY JACKET, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 60. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY JACKET, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 61. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY JACKET, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 62. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY JACKET, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 63. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY JACKET, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 64. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY JACKET, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 65. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY MONOPILE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 66. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY MONOPILE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 67. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY MONOPILE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 68. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY MONOPILE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 69. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY MONOPILE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 70. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY MONOPILE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 71. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 72. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 73. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY BLADE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 74. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY BLADE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 75. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY BLADE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 76. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY BLADE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 77. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY BLADE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 78. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY BLADE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 79. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY NACELLE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 80. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY NACELLE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 81. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY NACELLE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 82. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY NACELLE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 83. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY NACELLE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 84. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY NACELLE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 85. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TOWER, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 86. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TOWER, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 87. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TOWER, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 88. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TOWER, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 89. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TOWER, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 90. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TOWER, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 91. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 92. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 93. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY DEEP, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 94. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY DEEP, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 95. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY DEEP, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 96. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY DEEP, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 97. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY DEEP, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 98. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY DEEP, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 99. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SHALLOW, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 100. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SHALLOW, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 101. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SHALLOW, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 102. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SHALLOW, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 103. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SHALLOW, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 104. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY SHALLOW, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 105. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TRANSITIONAL, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 106. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TRANSITIONAL, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 107. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TRANSITIONAL, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 108. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TRANSITIONAL, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 109. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TRANSITIONAL, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 110. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY TRANSITIONAL, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 111. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 112. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 113. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 114. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 115. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 116. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 117. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 118. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 119. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 120. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 121. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 122. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 123. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 124. AMERICAS OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 125. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 126. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 127. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 128. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 129. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 130. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 131. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 132. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 133. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 134. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 135. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 136. NORTH AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 137. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 138. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 139. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 140. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 141. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 142. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 143. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 144. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 145. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 146. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 147. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 148. LATIN AMERICA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 149. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 150. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 151. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 152. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 153. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 154. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 155. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 156. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 157. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 158. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 159. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 160. EUROPE, MIDDLE EAST & AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 161. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 162. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 163. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 164. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 165. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 166. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 167. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 168. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 169. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 170. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 171. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 172. EUROPE OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 173. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 174. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 175. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 176. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 177. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 178. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 179. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 180. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 181. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 182. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 183. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 184. MIDDLE EAST OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 185. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 186. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 187. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 188. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 189. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 190. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 191. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 192. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 193. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 194. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 195. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 196. AFRICA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 197. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 198. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 199. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 200. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 201. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 202. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 203. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 204. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 205. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 206. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 207. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 208. ASIA-PACIFIC OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 209. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 210. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 211. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 212. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 213. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 214. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 215. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 216. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 217. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 218. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 219. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 220. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 221. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 222. ASEAN OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 223. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 224. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 225. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 226. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 227. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 228. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 229. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 230. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 231. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 232. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 233. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 234. GCC OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 235. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 236. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 237. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 238. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 239. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 240. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 241. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 242. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 243. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 244. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 245. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 246. EUROPEAN UNION OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 247. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 248. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 249. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 250. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 251. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 252. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 253. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 254. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 255. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 256. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 257. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 258. BRICS OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 259. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 260. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 261. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 262. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 263. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 264. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 265. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 266. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 267. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 268. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 269. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 270. G7 OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 271. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 272. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 273. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 274. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 275. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 276. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 277. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 278. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 279. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 280. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 281. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 282. NATO OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 283. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 284. GLOBAL OFFSHORE WIND TURBINE MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 285. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 286. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 287. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 288. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 289. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 290. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 291. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 292. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 293. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 294. UNITED STATES OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 295. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 296. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 297. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 298. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 299. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 300. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 301. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 302. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 303. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 304. CANADA OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 305. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 306. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 307. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 308. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 309. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 310. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 311. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 312. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 313. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 314. MEXICO OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 315. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 316. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 317. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 318. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 319. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 320. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 321. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 322. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 323. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 324. BRAZIL OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 325. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 326. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 327. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2018-2024 (USD MILLION)
  • TABLE 328. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY FOUNDATION TYPE, 2025-2032 (USD MILLION)
  • TABLE 329. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2018-2024 (USD MILLION)
  • TABLE 330. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY FLOATING, 2025-2032 (USD MILLION)
  • TABLE 331. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2018-2024 (USD MILLION)
  • TABLE 332. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY COMPONENT, 2025-2032 (USD MILLION)
  • TABLE 333. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2018-2024 (USD MILLION)
  • TABLE 334. UNITED KINGDOM OFFSHORE WIND TURBINE MARKET SIZE, BY WATER DEPTH, 2025-2032 (USD MILLION)
  • TABLE 335. GERMANY OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2018-2024 (USD MILLION)
  • TABLE 336. GERMANY OFFSHORE WIND TURBINE MARKET SIZE, BY TURBINE CAPACITY, 2025-2032 (USD MILLION)
  • TABLE 337. GERMA
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!