Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1919224

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1919224

Plant Growth-Promoting Rhizobacteria Market by Microorganism Type, Crop Type, Formulation, Application Method - Global Forecast 2026-2032

PUBLISHED:
PAGES: 188 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Plant Growth-Promoting Rhizobacteria Market was valued at USD 231.84 million in 2025 and is projected to grow to USD 252.05 million in 2026, with a CAGR of 7.62%, reaching USD 387.73 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 231.84 million
Estimated Year [2026] USD 252.05 million
Forecast Year [2032] USD 387.73 million
CAGR (%) 7.62%

A strategic orientation to plant growth-promoting rhizobacteria that bridges scientific mechanisms, agronomic utility, and commercial adoption pathways

Plant growth-promoting rhizobacteria (PGPR) have transitioned from a largely academic pursuit to a commercially consequential component of modern crop management strategies. This introduction situates PGPR within the intersection of soil biology, sustainable agriculture, and precision input management, and outlines the critical factors that shape adoption choices for growers, agronomists and agri-input companies. The foundational science is straightforward: specific rhizobacteria species can enhance nutrient availability, stimulate root architecture, and modulate plant hormonal responses, collectively improving plant resilience to abiotic stress and optimizing resource use efficiency.

As stakeholders increasingly pursue sustainability goals and regulatory scrutiny of synthetic inputs rises, PGPR solutions have attracted attention for their capacity to complement or partially substitute conventional fertilizers and crop protection products. Transitioning from laboratory to field-scale application demands rigorous strain selection, formulation stability, and delivery system optimization. Therefore, understanding the microbial taxonomy, strain-level attributes and the operational contexts in which these organisms demonstrate repeatable agronomic benefit is essential for credible commercialization. Moreover, the introduction frames the remainder of the executive summary by emphasizing that successful deployment depends on integrating biological science with supply chain logistics, farmer behavior insights and regulatory navigation.

How technological advances, evolving regulations, and shifting agronomic priorities are collectively reshaping commercial strategies and adoption dynamics for PGPR solutions

The PGPR landscape is undergoing transformative shifts driven by converging technological, regulatory and agronomic forces. Advances in microbial genomics and high-throughput phenotyping have improved the precision with which strains are selected and matched to crop and soil contexts, enabling companies to move beyond one-size-fits-all claims toward evidence-based product positioning. Concurrently, formulation science has matured, increasing the shelf-life and field performance of liquid and powder formats, which in turn expands distribution and application options for seed treatment, soil treatment and foliar spray deployments.

Another significant shift is the evolving role of data: digital agronomy platforms and on-farm monitoring systems are enabling feedback loops that validate performance under diverse environmental conditions, thereby accelerating adoption among progressive growers. Regulatory environments in several jurisdictions are also adapting to biologicals, creating clearer registration pathways while emphasizing safety and environmental assessment. These developments have prompted strategic realignments among traditional agrochemical incumbents, independent biological specialists and seed companies, each seeking competitive advantage through partnerships, in-licensing or internal R&D. Finally, changing customer priorities-where resilience, sustainability metrics and input efficiency matter as much as yield-are reshaping product value propositions and go-to-market strategies across the industry.

Cumulative effects of recent United States tariff adjustments on sourcing, production strategies, and commercialization pathways for biological agricultural inputs

Trade policy developments and tariff measures enacted by the United States in 2025 have had a cumulative impact on the operational economics and supply-chain configurations for biological inputs. Increased duties on certain imported goods have led organizations to reassess sourcing strategies for microbial inputs, raw ingredient carriers and packaging materials, prompting supply chain rationalization and nearshoring initiatives where feasible. Companies with vertically integrated production and localized formulation capabilities have experienced relative logistical advantages, while import-dependent players have needed to absorb higher landed costs or identify alternative suppliers in tariff-exempt jurisdictions.

In response, many firms intensified efforts to qualify domestic production sites and to optimize import volumes through consolidation of SKUs and longer-term contractual arrangements to mitigate tariff volatility. The cumulative effect has been a slowing of some product launches tied to imported components and a re-prioritization of products that can be manufactured with locally available inputs. Additionally, service models that reduce cross-border movements-such as licensing of strains with local contract manufacturing-became more attractive. From a farmer-facing perspective, short-term price pressure on certain formulations was observed in affected distribution channels, while resilient supply networks preserved continuity for high-demand SKUs. Looking ahead, strategic adaptations to trade dynamics will likely remain an important component of commercial planning, influencing sourcing decisions, partnership structures and regional go-to-market sequencing.

Delivering predictable agronomic outcomes requires aligning microorganism biology, crop priorities, application methods, and formulation science across commercial product strategies

A nuanced segmentation lens is essential to understand where efficacy, adoption barriers and commercial opportunities align. When examined by microorganism type, distinctions among Azospirillum, Bacillus, Pseudomonas and Rhizobium reveal different scientific rationales and operational requirements. For example, Azospirillum strains such as A brasilense and A lipoferum are often positioned for root growth stimulation and nitrogen-use efficiency, whereas Bacillus representatives like B amyloliquefaciens and B subtilis are frequently developed for both plant growth promotion and broad-spectrum pathogen suppression. Pseudomonas strains, exemplified by P fluorescens and P putida, are typically selected for rhizosphere competence and metabolite-mediated biocontrol, while Rhizobium species including R leguminosarum and R tropici remain central to legume inoculants with established symbiotic nitrogen-fixation pathways.

Crop type segmentation further clarifies value propositions, with cereals and grains demanding solutions that integrate seamlessly into seed treatment workflows, fruits and vegetables requiring high-efficacy formulations compatible with intensive spray regimes, oilseeds and pulses often benefiting from root-targeted inoculants, and turf and ornamentals prioritizing fast-acting, visually demonstrable outcomes. Application method segmentation highlights operational trade-offs: foliar spray provides rapid canopy delivery but requires formulation stability against environmental exposure; seed treatment delivers targeted early-life-stage benefits but imposes compatibility constraints with seed coatings; soil treatment offers sustained rhizosphere presence but hinges on soil microbiome interactions. Formulation choices between liquid and powder forms influence cold chain logistics, shelf life and farmer handling preferences, and therefore should be aligned with distribution models and end-user application capabilities.

Taken together, this segmentation matrix underscores that successful product strategies are those that integrate microorganism biology with crop-specific agronomy, pragmatic application methodologies, and formulation engineering to deliver predictable outcomes under commercial farming conditions.

How regional agronomic systems, regulatory expectations, and supply chain realities shape differentiated commercialization strategies across global territories

Regional dynamics shape both demand signals and operational footprints for PGPR solutions. In the Americas, adoption tends to be driven by large-scale row-crop systems and progressive commercial growers who value input efficiency, integrated pest and nutrient management, and digital agronomy support; this region also features significant domestic manufacturing capacity and established distribution networks that can accelerate commercialization of new biologicals. In Europe, Middle East & Africa, regulatory frameworks and sustainability mandates exert a strong influence on product requirements, pushing developers to demonstrate environmental safety and to provide robust efficacy data across heterogeneous agronomic systems, while market access varies significantly between high-regulation European markets and more permissive regulatory environments elsewhere in the region. In Asia-Pacific, diverse cropping systems ranging from intensive horticulture to large-scale cereal production create both niche and broad-based opportunities, with local production and formulation capabilities playing a decisive role given complex logistics and variable cold-chain infrastructure.

Each of these regions presents distinct commercialization imperatives: the Americas favor integration into large-scale input bundles and digital platforms; Europe, Middle East & Africa demand stringent data packages and regulatory alignment; and Asia-Pacific calls for adaptable formulations, cost-effective local production and distribution models that cater to fragmented farm sizes. Consequently, companies must calibrate R&D priorities, manufacturing investments and go-to-market strategies regionally, using localized field data and partnership networks to validate claims and to scale practitioner adoption.

Competitive positioning emerges from the integration of strain innovation, formulation scalability, regulatory experience, and partnership-driven commercialization models

The competitive landscape is characterized by a mix of established agrochemical companies expanding into biological portfolios, specialized biological vendors focusing on strain discovery and formulation, and a growing cohort of agtech startups offering digital-enabled performance validation. Established players bring scale in distribution, regulatory experience and integrated sales channels, enabling broader farmer reach for bundled offerings. Specialized biological firms typically excel in strain innovation and proof-of-concept field validation, making them attractive partners for licensing and co-development arrangements. Startups contribute novel delivery systems, precision matching algorithms and rapid iteration cycles that accelerate the translation of microbial genomics into field-ready products.

Strategic activity across the ecosystem includes partnerships between formulation specialists and microbial discovery teams, contract manufacturing agreements to localize production, and collaboration with seed companies to integrate inoculants into coated seed platforms. Intellectual property strategies remain pivotal, with firms balancing the protection of strain-level innovations and formulation trade secrets against the practical benefits of open collaboration to scale commercial adoption. In sum, competitive advantage often accrues to organizations that can combine rigorous science, scalable manufacturing, regulatory navigation and effective farmer outreach into an integrated commercial model.

Practical, multidisciplinary actions leaders can take to accelerate adoption of biologicals while safeguarding supply chains and ensuring scalable commercial execution

Industry leaders should prioritize a pragmatic, multidisciplinary approach that accelerates credible adoption while managing technical and commercial risk. First, invest in strain characterization and multi-environment field validation to create robust evidence of performance across representative soil types and climatic conditions. Second, optimize formulation pathways early to address shelf-life, compatibility with common application systems and farmer handling preferences, ensuring that liquid and powder options are developed with distribution realities in mind. Third, pursue manufacturing diversification and regional contract manufacturing to reduce exposure to tariff-driven cost shocks and to shorten lead times for key geographies.

Furthermore, establish strategic partnerships with seed companies, distributors and digital agronomy platforms to embed biologicals into existing decision-support workflows and to capture value through bundled offerings. Enhance farmer engagement through demonstration networks, transparent data sharing and clear ROI narratives that reflect both agronomic and sustainability outcomes. From a portfolio perspective, balance near-term commercialization of adaptable, high-confidence products with longer-term investments in strain discovery and formulation innovation. Finally, adopt a flexible IP and licensing strategy that enables rapid scaling through co-development while safeguarding core assets, and ensure regulatory affairs capabilities are integrated into product development timelines to minimize market access delays.

A mixed-methods research framework combining practitioner interviews, literature synthesis, field validation, and supply-chain analysis to inform actionable recommendations

The research approach combines primary qualitative inquiry, secondary literature synthesis and applied technical validation to produce actionable insights. Primary research included interviews with agronomists, product managers, formulation scientists and distribution partners to capture practitioner perspectives on efficacy, handling constraints and go-to-market barriers. These qualitative inputs were triangulated with peer-reviewed literature on microbial mechanisms, formulation stability and rhizosphere ecology, and with publicly available regulatory guidance to ensure alignment with evolving compliance expectations.

Field-validation case studies and demonstration trials were examined to assess strain performance across representative crop and soil contexts, with attention to reproducibility and practical application protocols such as seed treatment compatibility, foliar application timing and soil incorporation methods. Supply chain analysis evaluated manufacturing footprints, contract production options and logistics considerations in light of recent trade policy shifts. Where proprietary data were referenced, confidentiality was respected and insights were presented in aggregated form to protect commercial sensitivities. This mixed-methods methodology supports conclusions that are grounded in both scientific understanding and operational realities.

Converting biological potential into reliable farm-level outcomes requires integrated validation, adaptable manufacturing, and pragmatic commercialization strategies

In conclusion, plant growth-promoting rhizobacteria occupy a strategically important position in the transition toward more sustainable and resilient agricultural systems. Scientific advances and improved formulation technologies have reduced some historical barriers to field performance, while evolving regulatory and trade dynamics require deliberate operational planning. Success in this space will favor organizations that integrate strain-level science with pragmatic formulation, localized manufacturing strategies and strong distribution partnerships, and that can demonstrate consistent agronomic benefit under real-world farming conditions.

Moving from proof-of-concept to commercial scale demands coordinated investments in evidence generation, farmer engagement and supply chain resilience. Companies that prioritize rigorous validation, align product formats to end-user workflows, and proactively adapt to regional regulatory and trade environments will be best positioned to capture long-term value. Ultimately, the ability to convert biological potential into predictable farm-level outcomes will determine which solutions gain sustained adoption and which remain experimental.

Product Code: MRR-F14BA1B34149

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Plant Growth-Promoting Rhizobacteria Market, by Microorganism Type

  • 8.1. Azospirillum
    • 8.1.1. A Brasilense
    • 8.1.2. A Lipoferum
  • 8.2. Bacillus
    • 8.2.1. B Amyloliquefaciens
    • 8.2.2. B Subtilis
  • 8.3. Pseudomonas
    • 8.3.1. P Fluorescens
    • 8.3.2. P Putida
  • 8.4. Rhizobium
    • 8.4.1. R Leguminosarum
    • 8.4.2. R Tropici

9. Plant Growth-Promoting Rhizobacteria Market, by Crop Type

  • 9.1. Cereals & Grains
  • 9.2. Fruits & Vegetables
  • 9.3. Oilseeds & Pulses
  • 9.4. Turf & Ornamentals

10. Plant Growth-Promoting Rhizobacteria Market, by Formulation

  • 10.1. Liquid
  • 10.2. Powder

11. Plant Growth-Promoting Rhizobacteria Market, by Application Method

  • 11.1. Foliar Spray
  • 11.2. Seed Treatment
  • 11.3. Soil Treatment

12. Plant Growth-Promoting Rhizobacteria Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Plant Growth-Promoting Rhizobacteria Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Plant Growth-Promoting Rhizobacteria Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Plant Growth-Promoting Rhizobacteria Market

16. China Plant Growth-Promoting Rhizobacteria Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Acadian Seaplants Limited
  • 17.6. AgBiome, Inc.
  • 17.7. Agrinos AS
  • 17.8. Alltech, Inc.
  • 17.9. BASF SE
  • 17.10. Bayer AG
  • 17.11. BioWorks, Inc.
  • 17.12. Corteva Agriscience
  • 17.13. Gowan Company, LLC
  • 17.14. Huayang Group Co., Ltd.
  • 17.15. Indofil Industries Limited
  • 17.16. Isagro S.p.A.
  • 17.17. Jiangsu Qianye Bio-Technology Co., Ltd.
  • 17.18. Koppert Biological Systems B.V.
  • 17.19. Novozymes A/S
  • 17.20. Plant Health Care, Inc.
  • 17.21. Rizobacter S.A.
  • 17.22. Shandong Hengsheng Bio-Technology Co., Ltd.
  • 17.23. Symborg S.L.
  • 17.24. Syngenta AG
  • 17.25. Terramera Inc.
  • 17.26. UPL Limited
  • 17.27. Valagro S.p.A.
Product Code: MRR-F14BA1B34149

LIST OF FIGURES

  • FIGURE 1. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 12. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY A BRASILENSE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY A BRASILENSE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY A BRASILENSE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY A LIPOFERUM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY A LIPOFERUM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY A LIPOFERUM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY B AMYLOLIQUEFACIENS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY B AMYLOLIQUEFACIENS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY B AMYLOLIQUEFACIENS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY B SUBTILIS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY B SUBTILIS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY B SUBTILIS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY P FLUORESCENS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY P FLUORESCENS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY P FLUORESCENS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY P PUTIDA, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY P PUTIDA, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY P PUTIDA, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY R LEGUMINOSARUM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY R LEGUMINOSARUM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY R LEGUMINOSARUM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY R TROPICI, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY R TROPICI, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY R TROPICI, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CEREALS & GRAINS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CEREALS & GRAINS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CEREALS & GRAINS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FRUITS & VEGETABLES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FRUITS & VEGETABLES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FRUITS & VEGETABLES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY OILSEEDS & PULSES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY OILSEEDS & PULSES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY OILSEEDS & PULSES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY TURF & ORNAMENTALS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY TURF & ORNAMENTALS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY TURF & ORNAMENTALS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY LIQUID, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY LIQUID, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY LIQUID, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY POWDER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY POWDER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY POWDER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FOLIAR SPRAY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FOLIAR SPRAY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FOLIAR SPRAY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY SEED TREATMENT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY SEED TREATMENT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY SEED TREATMENT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY SOIL TREATMENT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY SOIL TREATMENT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY SOIL TREATMENT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 74. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 75. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 76. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 77. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 78. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 79. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 80. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 81. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 82. AMERICAS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 83. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 84. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 85. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 86. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 87. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 88. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 89. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 90. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 91. NORTH AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 92. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 93. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 94. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 95. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 96. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 97. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 98. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 99. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 100. LATIN AMERICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 101. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 102. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 103. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 104. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 105. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 106. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 107. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 108. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 109. EUROPE, MIDDLE EAST & AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 110. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 111. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 112. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 113. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 114. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 115. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 116. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 117. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 118. EUROPE PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 119. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 120. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 121. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 122. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 123. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 124. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 125. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 126. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 127. MIDDLE EAST PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 128. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 129. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 130. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 131. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 132. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 133. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 134. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 135. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 136. AFRICA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 137. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 138. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 139. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 140. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 141. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 142. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 143. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 144. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 145. ASIA-PACIFIC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 146. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 147. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 148. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 149. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 150. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 151. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 152. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 153. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 154. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 155. ASEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 156. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 157. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 158. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 159. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 160. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 161. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 162. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 163. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 164. GCC PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 165. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 166. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 167. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 168. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 169. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 170. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 171. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 172. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 173. EUROPEAN UNION PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 174. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 175. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 176. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 177. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 178. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 179. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 180. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 181. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 182. BRICS PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 183. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 184. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 185. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 186. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 187. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 188. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 189. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 190. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 191. G7 PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 192. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 193. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 194. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 195. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 196. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 197. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 198. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 199. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 200. NATO PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 201. GLOBAL PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 202. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 203. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 204. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 205. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 206. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 207. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 208. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 209. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 210. UNITED STATES PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
  • TABLE 211. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 212. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY MICROORGANISM TYPE, 2018-2032 (USD MILLION)
  • TABLE 213. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY AZOSPIRILLUM, 2018-2032 (USD MILLION)
  • TABLE 214. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY BACILLUS, 2018-2032 (USD MILLION)
  • TABLE 215. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY PSEUDOMONAS, 2018-2032 (USD MILLION)
  • TABLE 216. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY RHIZOBIUM, 2018-2032 (USD MILLION)
  • TABLE 217. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY CROP TYPE, 2018-2032 (USD MILLION)
  • TABLE 218. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY FORMULATION, 2018-2032 (USD MILLION)
  • TABLE 219. CHINA PLANT GROWTH-PROMOTING RHIZOBACTERIA MARKET SIZE, BY APPLICATION METHOD, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!