Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1925423

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1925423

Ethernet Switch Chips Market by Port Speed, Switch Type, Chip Architecture, Port Count, End User Industry - Global Forecast 2026-2032

PUBLISHED:
PAGES: 185 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Ethernet Switch Chips Market was valued at USD 14.25 billion in 2025 and is projected to grow to USD 16.14 billion in 2026, with a CAGR of 13.93%, reaching USD 35.52 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 14.25 billion
Estimated Year [2026] USD 16.14 billion
Forecast Year [2032] USD 35.52 billion
CAGR (%) 13.93%

A concise orientation to Ethernet switch silicon fundamentals, evolving technical priorities, and the strategic choices shaping modern network architectures

Ethernet switch chips are the foundational silicon that enables packet forwarding, traffic management, and advanced telemetry across modern network fabrics. As enterprises, hyperscalers, and telecommunications operators confront exponential traffic growth driven by cloud services, AI workloads, and next-generation mobile access, the demand-side requirements for switch silicon have evolved from raw throughput toward a blend of programmability, power efficiency, and integrated software capabilities.

Historically, switch silicon design emphasized monolithic ASIC performance and deterministic forwarding at scale. However, the contemporary landscape is characterized by a more nuanced set of priorities: the integration of programmable pipelines, richer telemetry for observability, and optimized power consumption per bit. These priorities influence procurement and product roadmaps, compelling design teams to weigh trade-offs between fixed-function ASICs and programmable alternatives such as P4-targeted architectures and SDK-driven platforms. Moreover, port speed diversity-from legacy 1 Gigabit linkages to today's 100 and 400 Gigabit interfaces-requires adaptable PHY ecosystems and modular switching capacity architectures.

Consequently, decision-makers must reconcile immediate deployment needs with longer-term architectural flexibility. This requires aligning silicon choices with software stacks, co-designing control-plane elements, and ensuring end-to-end interoperability with optical and copper front-end subsystems. In addition, evolving regulatory and trade dynamics are prompting renewed attention to supply chain resilience and regional sourcing. Therefore, the introduction to this domain is less about a single technology choice and more about designing a capability stack that balances performance, programmability, power, and procurement agility.

Deeply influential technological and commercial forces reshaping switch silicon design priorities and accelerating vendor and buyer ecosystem change

The last several years have seen disruptive shifts that are redefining the economics and engineering of Ethernet switch chips, and these changes are accelerating the pace of architectural innovation. Artificial intelligence and large language model workloads have increased east-west traffic inside data centers, prompting a move toward higher port speeds and larger switching meshes. At the same time, hyperscale operators are pushing for deeper programmability to optimize flow processing and telemetry, which in turn has stimulated greater interest in P4-programmable pipelines and SDK-driven flexibility.

Simultaneously, the industry is experiencing a topology shift from solely relying on monolithic ASICs to adopting hybrid approaches that combine multi-chip modules, discrete switch fabrics, and even FPGA acceleration for specific workloads. This hybridization is driven by node-scaling limitations, time-to-market pressures, and the need to decouple software feature cycles from silicon tapeouts. Moreover, disaggregation and open networking initiatives are pressuring traditional system integrators to demonstrate software-centric differentiation rather than purely hardware-based feature sets.

Another transformative axis is energy efficiency and thermal management. As port speeds climb and switching capacities expand, power per bit becomes a critical determinant of deployment feasibility and operational expense. Energy-aware designs and improved telemetry for power management are therefore becoming priorities for both hyperscale and enterprise deployments. Lastly, supply-chain reconfiguration, regional content rules, and IP-security considerations are changing procurement patterns, forcing both vendors and buyers to adopt more flexible sourcing and validation strategies. Taken together, these shifts are creating an environment where agility, software-silicon co-design, and lifecycle economics determine competitive advantage.

Comprehensive assessment of how 2025 tariff measures reshaped sourcing logic, product timing, and supply-chain strategies for Ethernet switch silicon

Policy shifts and tariff measures introduced in 2025 created a new layer of complexity for global supply chains that support Ethernet switch silicon. These measures influenced decisions about where to source critical components, how to structure contracts, and how to hedge exposure to cross-border duties and regulatory uncertainty. In practice, organizations responded by accelerating regional supply diversification, increasing local inventory buffers, and reevaluating procurement clauses to incorporate tariff contingencies and pass-through mechanisms.

From a product development perspective, tariff-driven uncertainty affected the timing of product launches and the allocation of R&D resources. Some firms prioritized platform modularity to allow selective localization of high-duty-value subsystems while keeping core intellectual property within established design centers. Others accelerated qualification of alternative silicon and optical suppliers to preserve lead times. Importantly, the tariffs disproportionately impacted segments where assembly and packaging contribute significant value-add, prompting manufacturers to reconsider the trade-offs between monolithic ASIC consolidation and multi-chip or MCM approaches that can partially shift value chains.

In addition, tariff dynamics intensified collaboration between buyers and suppliers to optimize total landed cost rather than focusing solely on unit price. Long-term negotiated commitments, joint inventory management, and regional contract manufacturing partnerships became more attractive as mechanisms to stabilize supply and control cost volatility. For buyers, the cumulative impact of tariffs in 2025 reinforced the need for strategic sourcing playbooks that blend technical fit with geopolitical and trade-risk assessments, ensuring continuity while preserving the flexibility to respond to future policy changes.

Segment-driven intelligence revealing how port speeds, switching capacity, industry use cases, chip types, and fabrication choices dictate platform trade-offs

Interpretation of segmentation layers reveals differentiated technical and commercial dynamics that influence vendor strategies and buyer selection criteria. When analyzing port-speed requirements, product teams must account for a continuum that spans legacy 1 Gigabit links through high-density 10 and 25 Gigabit deployments to the ultra-high-throughput demands of 100, 400 Gigabit and beyond. Each speed tier imposes unique constraints on PHY integration, thermal management, and the software pipeline needed to unlock advanced features such as in-band telemetry and fine-grained flow control.

Switching capacity is another axis that frames platform design choices. Architectures designed for less-than-10 Gbps applications prioritize cost and low-power operation, whereas fabrics targeting 10 to 100 Gbps or 100 to 400 Gbps require more sophisticated buffering, congestion management, and packet scheduling logic. For systems that must exceed 400 Gbps, multi-chip fabrics and advanced interconnect protocols are frequently necessary to maintain throughput without sacrificing latency.

End-user industry segmentation further clarifies procurement drivers: financial services and telecommunications prioritize determinism, security, and low latency; data centers demand scale, observability, and operational automation; healthcare and government emphasize compliance, reliability, and data sovereignty. Within the data center category, the distinction between enterprise colocation and hyperscale cloud operators is material, as hyperscalers often co-design silicon and software for specialized workloads while colocation providers emphasize interoperability and standardization.

Chip-type considerations separate fixed-function ASICs from programmable solutions. Fixed-function platforms offer predictable performance and power efficiency, while programmable chips-whether P4-programmable or SDK-driven-provide flexibility to implement custom forwarding behaviors, extensible telemetry, and rapid feature rollouts. Technology choices between ASIC and FPGA further determine design trade-offs. ASICs, offered in monolithic and multi-chip implementations, deliver efficiency and integration, while FPGAs enable rapid iteration and workload-specific acceleration. Ultimately, layering these segmentation lenses provides a nuanced view of where investment, engineering effort, and procurement attention should be concentrated to meet distinct deployment needs.

Regionally nuanced strategic implications showing how Americas, EMEA, and Asia-Pacific forces alter sourcing, innovation, and deployment choices

Regional dynamics play a critical role in shaping business models, sourcing decisions, and deployment roadmaps. In the Americas, innovation centers and hyperscale cloud operators continue to drive early adoption of programmable pipelines and high-throughput fabrics. This region emphasizes end-to-end integration, rapid feature iteration, and vertically integrated design models, which often accelerate the adoption of custom silicon or closely partnered supplier relationships. Consequently, procurement in this region frequently prioritizes innovation velocity and operational automation over absolute unit cost.

Europe, the Middle East, and Africa exhibit a heterogeneous landscape where regulatory considerations, data-protection regimes, and sovereign procurement priorities shape networking investment. Operators across this region often balance the need for interoperable systems with requirements for localized validation and compliance. Telcos and government entities here are investing in modernization programs that emphasize reliability, security, and lifecycle transparency, which in turn shifts emphasis toward proven architectures and strong vendor support models.

Asia-Pacific remains central to manufacturing scale and rapid deployment cycles, with major manufacturing clusters and large regional operators driving demand for both commodity and advanced switch silicon. Many suppliers and OEMs in this region prioritize cost-optimized designs and rapid time-to-production, while local policy initiatives and national digital infrastructure programs encourage domestic capability development. Trade dynamics have also encouraged certain buyers in the region to invest in dual-sourcing strategies and local qualification processes to ensure continuity amid geopolitical uncertainty. Collectively, these regional distinctions inform differentiated go-to-market strategies and influence where companies choose to locate design, validation, and production activities.

An integrative view of vendor strategies, ecosystem partnerships, and differentiators that determine competitive success in switch silicon markets

Competitive dynamics in the Ethernet switch silicon ecosystem reflect a spectrum of strategic postures, from vertically integrated platform producers to specialized silicon and IP vendors. Some market participants focus on delivering highly optimized, fixed-function ASICs that prioritize power efficiency and predictable performance for standardized data-center and enterprise use cases. Other players emphasize programmability and software ecosystems, offering SDK- or P4-oriented solutions that enable customers to implement proprietary forwarding logic and advanced telemetry without changing hardware.

Partner ecosystems and strategic alliances are increasingly important as companies seek to pair silicon capability with software-defined control planes and optical subsystem suppliers. This trend favors firms that can offer not only silicon but also a coherent software stack, reference designs, and third-party validation. In addition, the rise of hybrid architectures-combining ASICs with FPGAs or multi-chip solutions-has created niches for companies that provide flexible integration services and MCM packaging expertise.

Mergers, strategic investments, and collaborative go-to-market arrangements are shaping the competitive landscape by enabling faster feature delivery and broader technology portfolios. Differentiation increasingly derives from the quality of the software developer experience, clarity of migration paths for operators, and demonstrable lifetime operational efficiencies. Buyers therefore evaluate potential suppliers not just on raw silicon metrics but on the vendor's ability to deliver sustained ecosystem support, transparent roadmaps, and risk-sharing commercial models.

Practical and prioritized strategic actions for leaders to strengthen resilience, accelerate innovation, and improve procurement and operational outcomes

Leaders must prioritize a set of strategic actions that translate technical insight into commercial resilience and market advantage. First, diversify supply chains by qualifying multiple sources for high-value subsystems and by establishing regional manufacturing or contract-manufacturing relationships to mitigate tariff and geopolitical risk. This approach reduces single-source exposure and creates options for rapid reallocation of production capacity when needed.

Second, invest in programmable architectures and software-silicon co-design to accelerate feature delivery and to support evolving telemetry and offload needs. Programmability reduces dependency on long silicon cycles and enables rapid experimentation with new forwarding paradigms. Third, emphasize power efficiency and thermal optimization as primary design constraints; reducing power per bit has immediate operational benefits and expands feasible deployment scenarios for high-density switching.

Fourth, adopt long-term commercial arrangements that align incentives between buyers and suppliers, including joint inventory management, risk-sharing clauses, and multi-year qualification roadmaps. Fifth, develop a clear regional strategy that balances centralized design capabilities with localized production and compliance activities. Sixth, accelerate talent acquisition and upskilling programs focused on P4, SDKs, and systems integration to ensure internal capability to evaluate and integrate advanced silicon.

Seventh, prioritize ecosystem partnerships that include software vendors, optical suppliers, and systems integrators to reduce integration risk and to speed time to market. Finally, implement scenario-based procurement playbooks that incorporate tariff, supply disruption, and demand-shock scenarios, ensuring rapid decision-making under stress. Together, these actions create the organizational agility required to navigate a rapidly changing technology and policy environment.

A rigorous mixed-methods research approach combining expert interviews, technical artifact analysis, supply-chain mapping, and scenario validation for practical insights

The research underpinning this analysis employed a layered methodology that combined primary expert dialogues, technical artifact analysis, and scenario-based validation. Primary inputs included structured interviews with design architects, network operators, procurement leads, and systems integrators, providing insight into real-world trade-offs, procurement cycles, and architecture preferences. These qualitative insights were triangulated with public technical documentation, standards specifications, patents, and product data sheets to validate capability claims and interoperability considerations.

Supply-chain mapping was used to identify critical nodes and potential single points of failure across assembly, packaging, and test. Technology assessments examined silicon process choices, MCM approaches, FPGA utilization patterns, and PHY/optical integration challenges. Where appropriate, techno-economic modeling was applied to compare lifecycle power, thermal, and total-cost-of-ownership implications across architecture choices without attempting to produce revenue forecasts.

Finally, scenario-based stress tests simulated the potential impacts of tariff changes, supplier disruptions, and rapid demand shifts to identify robust strategic responses. All findings were validated through a review cycle with industry practitioners and adjusted to reflect practical constraints and deployment realities. This blended approach ensured that the recommendations are grounded in both engineering realities and procurement behaviors.

A strategic synthesis highlighting the imperative for modularity, software co-design, and supply-chain resilience to secure long-term advantage

In conclusion, Ethernet switch silicon is at an inflection point where architectural choice, software integration, and supply-chain strategy jointly determine competitive positioning. The convergence of higher throughput demands, the rise of programmable data planes, and evolving policy landscapes requires organizations to move beyond single-metric evaluation and toward multidimensional decision frameworks that account for technical fit, operational cost, and geopolitical risk.

Decision-makers should focus on modularity, software-silicon co-design, and procurement resilience to navigate uncertainty effectively. By aligning product roadmaps with flexible sourcing strategies and by investing in developer experience for programmable platforms, organizations can preserve agility while meeting demanding performance and efficiency requirements. The strategic imperative is clear: integrate technical, commercial, and regional considerations into coherent plans that enable rapid adaptation to both technological innovations and policy shifts.

Product Code: MRR-7A380DA7C609

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Ethernet Switch Chips Market, by Port Speed

  • 8.1. Less than 5 Gbps
  • 8.2. 5 - 100 Gbps
  • 8.3. More than 100 Gbps

9. Ethernet Switch Chips Market, by Switch Type

  • 9.1. Unmanaged Switch Chips
  • 9.2. Smart Or Web-Managed Switch Chips
  • 9.3. Fully Managed Switch Chips
  • 9.4. Layer 3 And Multilayer Switch Chips
  • 9.5. Carrier-Grade Switch Chips

10. Ethernet Switch Chips Market, by Chip Architecture

  • 10.1. Fixed-Function Asic
  • 10.2. Programmable Asic
    • 10.2.1. P4-Programmable
    • 10.2.2. Sdk-Programmable
  • 10.3. Network Processor-Based
  • 10.4. Fpga-Based
  • 10.5. System-On-Chip With Integrated Cpu
    • 10.5.1. Single-Core Control Plane
    • 10.5.2. Multicore Control Plane

11. Ethernet Switch Chips Market, by Port Count

  • 11.1. Less Than 5 Ports
  • 11.2. 6 To 8 Ports
  • 11.3. More Than 8 Ports

12. Ethernet Switch Chips Market, by End User Industry

  • 12.1. Data Centers
  • 12.2. Telecommunications
  • 12.3. Enterprises
  • 12.4. Industrial Automation
  • 12.5. Automotive & Transportation
  • 12.6. Healthcare
  • 12.7. Energy & Utilities
  • 12.8. Government & Defense
  • 12.9. Consumer & SMB Networking

13. Ethernet Switch Chips Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Ethernet Switch Chips Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Ethernet Switch Chips Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Ethernet Switch Chips Market

17. China Ethernet Switch Chips Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Arista Networks, Inc.
  • 18.6. ASIX Electronics Corporation
  • 18.7. Broadcom Inc.
  • 18.8. Cisco Systems, Inc.
  • 18.9. Dell Technologies Inc.
  • 18.10. Extreme Networks, Inc.
  • 18.11. Hewlett Packard Enterprise Company
  • 18.12. Huawei Technologies Co., Ltd.
  • 18.13. Intel Corporation
  • 18.14. Juniper Networks, Inc.
  • 18.15. Marvell Technology, Inc.
  • 18.16. MediaTek Inc.
  • 18.17. Microchip Technology Inc.
  • 18.18. Moxa Inc.
  • 18.19. Netgear, Inc.
  • 18.20. NVIDIA Corporation
  • 18.21. Realtek Semiconductor Corp.
  • 18.22. Renesas Electronics Corporation
  • 18.23. Texas Instruments Incorporated
  • 18.24. TP-Link Technologies Co., Ltd.
Product Code: MRR-7A380DA7C609

LIST OF FIGURES

  • FIGURE 1. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL ETHERNET SWITCH CHIPS MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL ETHERNET SWITCH CHIPS MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 12. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 13. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LESS THAN 5 GBPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LESS THAN 5 GBPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LESS THAN 5 GBPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY 5 - 100 GBPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY 5 - 100 GBPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY 5 - 100 GBPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MORE THAN 100 GBPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MORE THAN 100 GBPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MORE THAN 100 GBPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY UNMANAGED SWITCH CHIPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY UNMANAGED SWITCH CHIPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY UNMANAGED SWITCH CHIPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SMART OR WEB-MANAGED SWITCH CHIPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SMART OR WEB-MANAGED SWITCH CHIPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SMART OR WEB-MANAGED SWITCH CHIPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FULLY MANAGED SWITCH CHIPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FULLY MANAGED SWITCH CHIPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FULLY MANAGED SWITCH CHIPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LAYER 3 AND MULTILAYER SWITCH CHIPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LAYER 3 AND MULTILAYER SWITCH CHIPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LAYER 3 AND MULTILAYER SWITCH CHIPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY CARRIER-GRADE SWITCH CHIPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY CARRIER-GRADE SWITCH CHIPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY CARRIER-GRADE SWITCH CHIPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FIXED-FUNCTION ASIC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FIXED-FUNCTION ASIC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FIXED-FUNCTION ASIC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY P4-PROGRAMMABLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY P4-PROGRAMMABLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY P4-PROGRAMMABLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SDK-PROGRAMMABLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SDK-PROGRAMMABLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SDK-PROGRAMMABLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY NETWORK PROCESSOR-BASED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY NETWORK PROCESSOR-BASED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY NETWORK PROCESSOR-BASED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FPGA-BASED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FPGA-BASED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY FPGA-BASED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SINGLE-CORE CONTROL PLANE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SINGLE-CORE CONTROL PLANE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY SINGLE-CORE CONTROL PLANE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MULTICORE CONTROL PLANE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MULTICORE CONTROL PLANE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MULTICORE CONTROL PLANE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LESS THAN 5 PORTS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LESS THAN 5 PORTS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY LESS THAN 5 PORTS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY 6 TO 8 PORTS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY 6 TO 8 PORTS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY 6 TO 8 PORTS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MORE THAN 8 PORTS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MORE THAN 8 PORTS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY MORE THAN 8 PORTS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY DATA CENTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY DATA CENTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY DATA CENTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY TELECOMMUNICATIONS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY TELECOMMUNICATIONS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 74. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY TELECOMMUNICATIONS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 75. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY ENTERPRISES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 76. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY ENTERPRISES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 77. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY ENTERPRISES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 78. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY INDUSTRIAL AUTOMATION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 79. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY INDUSTRIAL AUTOMATION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 80. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY INDUSTRIAL AUTOMATION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 81. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY AUTOMOTIVE & TRANSPORTATION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 82. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY AUTOMOTIVE & TRANSPORTATION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 83. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY AUTOMOTIVE & TRANSPORTATION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 84. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY HEALTHCARE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 85. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY HEALTHCARE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 86. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY HEALTHCARE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 87. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY ENERGY & UTILITIES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 88. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY ENERGY & UTILITIES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 89. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY ENERGY & UTILITIES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 90. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY GOVERNMENT & DEFENSE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 91. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY GOVERNMENT & DEFENSE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 92. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY GOVERNMENT & DEFENSE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 93. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY CONSUMER & SMB NETWORKING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 94. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY CONSUMER & SMB NETWORKING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 95. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY CONSUMER & SMB NETWORKING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 96. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 97. AMERICAS ETHERNET SWITCH CHIPS MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 98. AMERICAS ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 99. AMERICAS ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 100. AMERICAS ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 101. AMERICAS ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 102. AMERICAS ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 103. AMERICAS ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 104. AMERICAS ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 105. NORTH AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 106. NORTH AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 107. NORTH AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 108. NORTH AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 109. NORTH AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 110. NORTH AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 111. NORTH AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 112. NORTH AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 113. LATIN AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 114. LATIN AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 115. LATIN AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 116. LATIN AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 117. LATIN AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 118. LATIN AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 119. LATIN AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 120. LATIN AMERICA ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 121. EUROPE, MIDDLE EAST & AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 122. EUROPE, MIDDLE EAST & AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 123. EUROPE, MIDDLE EAST & AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 124. EUROPE, MIDDLE EAST & AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 125. EUROPE, MIDDLE EAST & AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 126. EUROPE, MIDDLE EAST & AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 127. EUROPE, MIDDLE EAST & AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 128. EUROPE, MIDDLE EAST & AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 129. EUROPE ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 130. EUROPE ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 131. EUROPE ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 132. EUROPE ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 133. EUROPE ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 134. EUROPE ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 135. EUROPE ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 136. EUROPE ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 137. MIDDLE EAST ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 138. MIDDLE EAST ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 139. MIDDLE EAST ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 140. MIDDLE EAST ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 141. MIDDLE EAST ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 142. MIDDLE EAST ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 143. MIDDLE EAST ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 144. MIDDLE EAST ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 145. AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 146. AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 147. AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 148. AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 149. AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 150. AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 151. AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 152. AFRICA ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 153. ASIA-PACIFIC ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 154. ASIA-PACIFIC ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 155. ASIA-PACIFIC ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 156. ASIA-PACIFIC ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 157. ASIA-PACIFIC ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 158. ASIA-PACIFIC ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 159. ASIA-PACIFIC ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 160. ASIA-PACIFIC ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 161. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 162. ASEAN ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 163. ASEAN ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 164. ASEAN ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 165. ASEAN ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 166. ASEAN ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 167. ASEAN ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 168. ASEAN ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 169. ASEAN ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 170. GCC ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 171. GCC ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 172. GCC ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 173. GCC ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 174. GCC ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 175. GCC ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 176. GCC ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 177. GCC ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 178. EUROPEAN UNION ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 179. EUROPEAN UNION ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 180. EUROPEAN UNION ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 181. EUROPEAN UNION ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 182. EUROPEAN UNION ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 183. EUROPEAN UNION ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 184. EUROPEAN UNION ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 185. EUROPEAN UNION ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 186. BRICS ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 187. BRICS ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 188. BRICS ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 189. BRICS ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 190. BRICS ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 191. BRICS ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 192. BRICS ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 193. BRICS ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 194. G7 ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 195. G7 ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 196. G7 ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 197. G7 ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 198. G7 ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 199. G7 ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 200. G7 ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 201. G7 ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 202. NATO ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 203. NATO ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 204. NATO ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 205. NATO ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 206. NATO ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 207. NATO ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 208. NATO ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 209. NATO ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 210. GLOBAL ETHERNET SWITCH CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 211. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 212. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 213. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 214. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 215. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 216. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 217. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 218. UNITED STATES ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 219. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 220. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT SPEED, 2018-2032 (USD MILLION)
  • TABLE 221. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, BY SWITCH TYPE, 2018-2032 (USD MILLION)
  • TABLE 222. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, BY CHIP ARCHITECTURE, 2018-2032 (USD MILLION)
  • TABLE 223. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, BY PROGRAMMABLE ASIC, 2018-2032 (USD MILLION)
  • TABLE 224. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, BY SYSTEM-ON-CHIP WITH INTEGRATED CPU, 2018-2032 (USD MILLION)
  • TABLE 225. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, BY PORT COUNT, 2018-2032 (USD MILLION)
  • TABLE 226. CHINA ETHERNET SWITCH CHIPS MARKET SIZE, BY END USER INDUSTRY, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!