Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1925556

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1925556

EV Rotor Shaft Market by Vehicle Type, Power Rating, Shaft Material, Rotor Type, Cooling Method, Production Process, End User, Distribution Channel - Global Forecast 2026-2032

PUBLISHED:
PAGES: 186 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The EV Rotor Shaft Market was valued at USD 2.81 billion in 2025 and is projected to grow to USD 3.03 billion in 2026, with a CAGR of 9.01%, reaching USD 5.14 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 2.81 billion
Estimated Year [2026] USD 3.03 billion
Forecast Year [2032] USD 5.14 billion
CAGR (%) 9.01%

Framing the central role of rotor shaft engineering within electrified drivetrains and its cascading influence on performance, manufacturability, and supply chain decisions

The electric vehicle rotor shaft has emerged as a critical enabler of driveline performance, reliability, and manufacturing efficiency across rapidly evolving propulsion ecosystems. As vehicle electrification accelerates, the shaft that connects the rotor to transmission or direct-drive hubs occupies a disproportionately strategic position: it influences NVH performance, thermal management pathways, manufacturability, and broader supply chain design. Consequently, engineering choices for geometry, material, and production process now have direct implications for vehicle range, total cost of ownership, and serviceability.

In addition, design trends in electric motors are reshaping shaft requirements. Higher torque densities, compact packaging, and the adoption of advanced rotor types increase demands on mechanical robustness and precision. At the same time, OEMs and tier suppliers are under mounting pressure to optimize mass, reduce manufacturing cycle times, and ensure component traceability. Therefore, a succinct yet thorough understanding of technical trade-offs, material availability, and production modalities is essential for strategic decision-makers.

This executive summary synthesizes key shifts influencing rotor shaft design, the interplay of tariffs and trade policy on supply networks, segmentation insights relevant to product portfolios and go-to-market strategies, regional dynamics, competitive behavior of companies within the value chain, and pragmatic recommendations for industry leaders seeking to maintain a competitive edge. The analysis emphasizes actionable intelligence while preserving clarity for both engineering and commercial stakeholders.

How evolving motor topologies, material breakthroughs, manufacturing innovations, and sustainability priorities are jointly redefining rotor shaft design and supply chain strategies

The EV rotor shaft market is being reshaped by a confluence of technological, regulatory, and commercial forces that together redefine design priorities and supply chain architecture. Electrification has raised demands for lighter, stronger, and more precisely balanced shafts as motors operate at higher rotational speeds with tighter tolerances. At the same time, advances in motor topologies, including wider adoption of permanent magnet and synchronous reluctance machines, are changing axial load profiles and thermal coupling, which in turn informs shaft material selection and interface design.

Moreover, materials innovation is accelerating. Aluminum alloys and engineered composites are increasingly considered as alternatives to traditional steel for applications where mass reduction yields measurable benefits in vehicle range and dynamic response. Parallel to materials shifts, manufacturing processes are adapting; forging remains important for high strength and fatigue life, while precision machining and novel additive techniques are enabling complex geometries and integrated features that reduce assembly count. These manufacturing trends are closely tied to cost structures and cycle time imperatives, compelling suppliers to balance capital intensity with flexibility.

Supply chain resilience is also evolving from a peripheral concern to a strategic imperative. Global disruptions have prompted OEMs to explore regionalization and dual sourcing strategies, and to place greater emphasis on supplier transparency, quality assurance, and component traceability. In turn, this encourages closer collaboration between motor designers, shaft manufacturers, and material suppliers to ensure parts are optimized for both performance and manufacturability. Consequently, the industry is witnessing more co-development agreements and vertically integrated initiatives that align shaft specifications with motor architecture early in the design cycle.

In addition, regulatory and sustainability drivers are influencing choices across the value chain. Lifecycle considerations, recyclability of alloys, and embodied carbon are increasingly factored into procurement decisions, leading to exploration of lower-carbon production methods and materials with favorable end-of-life attributes. Collectively, these shifts demand that stakeholders maintain a cross-functional perspective, integrating design, materials science, manufacturing capabilities, and regulatory compliance into coherent product and sourcing strategies.

Assessing how tariff adjustments in 2025 have catalyzed regionalization, supplier consolidation, and shifts in material and process selection across the EV rotor shaft value chain

Recent trade measures and tariff adjustments introduced in 2025 have had multifaceted implications for the EV rotor shaft ecosystem, principally by altering relative input costs and prompting strategic sourcing responses. Increased import duties on certain intermediate goods incentivize OEMs and suppliers to reassess sourcing geographies and to accelerate localization of critical components. As a result, procurement teams are intensifying supplier qualification programs within domestic and allied manufacturing bases to mitigate exposure to tariff volatility and shipping disruptions.

In parallel, tariff-driven cost pressures have influenced material and process selection. Where duties affect aluminum or steel inputs differently, engineering teams are recalibrating trade-offs between weight savings, fatigue performance, and total landed cost. This creates opportunities for material substitution in specific vehicle segments where the balance of performance and cost favors alternative alloys or composite reinforcements. Furthermore, the administrative overhead associated with tariff compliance-classification, valuation, and origin verification-has raised the attractiveness of vertically integrated suppliers that can manage traceability and documentation internally.

Operationally, tariffs have accelerated conversations around nearshoring, strategic stockholding, and modular manufacturing footprints. Suppliers are evaluating the economics of establishing regional machining or finishing centers that reduce cross-border flows while preserving centralized investments in high-capital processes like forging. Such hybrid footprints enable quicker lead-time response for aftermarket and OEM channels while partially insulating core production from tariff-induced cost swings.

Finally, tariffs have altered contractual dynamics across the value chain. OEM procurement teams are increasingly seeking clauses that share or mitigate tariff exposure, including negotiated price adjustment mechanisms, multi-sourcing commitments, and collaborative cost reduction programs. In response, suppliers are enhancing transparency on cost drivers and investing in process improvements to lower unit costs independently of border measures. Consequently, the cumulative effect of tariff actions in 2025 has been to catalyze structural shifts toward regionalized capacity, process efficiency, and closer commercial collaboration across stakeholders.

Strategic segmentation analysis revealing how vehicle class, power bands, end users, materials, rotor types, cooling approaches, production processes, and channels dictate product and go-to-market priorities

Examining segmentation through multiple lenses reveals distinct demand vectors and technical requirements that should guide product roadmaps and sales strategies. Based on vehicle type, diverse applications from buses and commercial vehicles to passenger cars and two- and three-wheelers create differentiated duty cycles and mechanical loading scenarios; passenger cars themselves bifurcate into economy, luxury, and mid segments, each with unique expectations for cost, NVH performance, and life cycle attributes. Consequently, a one-size-fits-all shaft strategy is suboptimal: shafts for heavy commercial platforms emphasize durability and torque capacity, whereas passenger car shafts prioritize mass optimization and refinement.

When viewed by power rating, high power, low power, and medium power classifications expose clear engineering priorities that influence materials and processing choices; medium power applications, further categorized into 100-150 kilowatt and 50-100 kilowatt bands, are often where trade-offs between cost and performance are most acute, demanding careful balancing of fatigue life, machining precision, and thermal compatibility with motor designs. These power-related distinctions also inform balancing tolerances and surface treatments that are critical to maintaining reliability at different rotational speeds.

Segmentation by end user differentiates channels and service expectations. The market is studied across aftermarket and OEM demand streams, with aftermarket activity further differentiated into retail and workshops. OEM programs typically emphasize long-term validation and traceability, while aftermarket channels prioritize availability, standardized fitment, and repairability. Therefore, suppliers must align their quality systems and distribution capabilities to support both the structured purchasing processes of OEMs and the responsiveness required by aftermarket participants.

Material-centric segmentation highlights divergent design philosophies. Shaft material choices across aluminum, composite, and steel each present trade-offs in stiffness-to-weight ratio, fatigue resistance, and fabrication workflows. Aluminum strategies support notable mass reductions but require attention to joint design and surface fatigue; composites enable integrated geometries and further weight savings yet introduce new considerations for joining and inspection; steel remains a robust option where cost and proven fatigue performance dominate requirements.

Rotor type-based segmentation-covering induction motor, permanent magnet motor, and synchronous reluctance motor configurations-translates into variant axial and torsional loading profiles, electromagnetic coupling considerations, and thermal transfer pathways that dictate shaft interface geometries and material compatibility. Cooling method, whether air cooled or liquid cooled, further modifies thermal management strategies and can influence the need for particular materials or coatings to mitigate thermal-induced stresses.

Production process segmentation between forging and machining defines supply chain capabilities and cost structures. Forging delivers superior fatigue properties and is preferable for high-load applications, while machining permits tighter tolerances and complex feature integration that benefit high-volume passenger car programs. Finally, distribution channel segmentation across direct sales, distributors, and online channels, with distributors further detailed into national and regional operations, underscores the necessity of calibrated go-to-market approaches that consider lead time expectations, inventory strategies, and service-level agreements pertinent to each channel.

Regional dynamics across the Americas, Europe Middle East & Africa, and Asia-Pacific that influence manufacturing footprints, material preferences, and supply chain resilience for rotor shaft players

Regional dynamics exert a pronounced influence on design choices, supply chain architecture, and commercial priorities for rotor shaft stakeholders. In the Americas, policy focus on manufacturing incentives and an emphasis on nearshoring have stimulated investment into regional machining and finishing capacities. Buyers in this region prioritize rapid delivery, high levels of traceability, and compliance with stringent safety and emissions-related procurement requirements, which favors suppliers that can demonstrate robust quality management systems and localized logistical capabilities.

In Europe, Middle East & Africa, regulatory strictness, sustainability targets, and advanced engineering ecosystems shape demand patterns. OEMs and tier suppliers in this region often place greater weight on lifecycle carbon footprints and recyclable material content. As a result, there is notable interest in low-embodied-carbon production methods and in materials that offer both performance and favorable end-of-life profiles. Furthermore, the proximity of sophisticated engineering centers encourages collaborative R&D engagements and pilot programs for novel shaft architectures.

Asia-Pacific represents a heterogeneous landscape with strong manufacturing depth, diversified supplier bases, and rapidly growing EV adoption across multiple markets. In several countries, established forging and machining capabilities coexist with emerging composite and additive manufacturing activities, enabling a wide range of capability mixes. Because cost sensitivity remains a significant consideration in many markets, suppliers offering flexible production scales and competitive total cost solutions are often favored, while simultaneously needing to address increasing expectations around quality and lead-time reliability from global OEMs.

Across regions, there is an observable convergence around priorities such as supply chain resilience, sustainability, and the need for tighter technical integration between motor and shaft design teams. However, the tempo and emphasis of these priorities vary by region, and successful market approaches therefore require regionally adapted product specifications, manufacturing footprints, and commercial models that reflect local regulatory, cost, and customer expectations.

Competitive landscape analysis highlighting how technical differentiation, collaborative engineering, and integrated service models determine supplier positioning and program wins

The competitive landscape for rotor shaft solutions is characterized by a mix of specialized component manufacturers, tier-one powertrain suppliers, material innovators, and vertically integrated OEM partners. Leading suppliers differentiate through engineering depth in fatigue design, dynamic balancing, and precision finishing; companies that combine advanced metallurgical capabilities with high-volume machining and forging capacity tend to be well positioned to serve heavy-duty and high-torque applications. Conversely, specialist providers focusing on composite technology, surface treatments, or integrated features are carving out niches in passenger car segments where mass reduction and NVH performance are differentiators.

Collaborative models are increasingly prevalent. Strategic alliances between motor designers and shaft producers enable concurrent engineering that reduces cycle time and produces components optimized for manufacturability and system-level performance. In addition, technology partnerships between materials developers and manufacturing houses accelerate the validation of new alloys and composite layups, while contract manufacturers with flexible capacity provide an attractive option for OEMs seeking to scale programs without heavy capital exposure.

Operational excellence and quality systems are key competitive levers. Companies that demonstrate rigorous quality assurance, traceability, and aftermarket support capabilities command stronger relationships with OEM procurement teams. Similarly, suppliers investing in digital inspection, inline testing, and connected quality platforms are better equipped to meet stringent certification requirements and to support warranty management processes.

Commercially, firms that offer integrated service bundles-spanning engineering support, localized warehousing, and responsive aftermarket logistics-tend to win multi-year programs. At the same time, cost pressure has driven consolidation and selective acquisitions, as firms seek capabilities in materials science, forging, or precision machining to round out their portfolios. The landscape therefore favors suppliers that can combine technical differentiation with scalable, reliable delivery models.

Practical strategic moves for OEMs and suppliers including co-development, mixed-material strategies, regional manufacturing design, tariff risk mitigation, digital quality systems, and sustainability actions

First, align early-stage motor and shaft design through cross-functional teams to reduce downstream rework and optimize system-level performance. When motor architects, materials engineers, and manufacturing planners collaborate from concept stage, the result is reduced cycle time, fewer interface changes, and better trade-offs between mass, fatigue life, and manufacturability. Consequently, formalized co-development agreements and shared validation protocols should be prioritized.

Second, pursue a mixed-material strategy that balances weight reduction goals with durability and cost resilience. Selective use of aluminum or composites for passenger car applications can yield performance advantages, while retaining steel options for heavy-duty platforms where longevity and proven fatigue behavior are paramount. To execute this approach, invest in material testing capabilities and design-for-manufacturing guidelines specific to each material class.

Third, build flexible regional footprints that combine centralized high-capital processes with localized finishing and distribution. This hybrid model mitigates tariff exposure and reduces lead times for aftermarket and OEM requirements. Additionally, suppliers should evaluate co-investment models with OEMs for regionally critical capacities to share risk and secure program volumes.

Fourth, strengthen tariff and trade-risk management through proactive contractual mechanisms and increased supply base diversification. Instituting price adjustment clauses tied to input duties, maintaining dual sourcing for critical inputs, and enhancing customs classification and origin documentation will reduce vulnerability to sudden policy shifts.

Fifth, invest in digital quality systems and predictive maintenance capabilities to assure performance and reduce warranty costs. Inline balancing, real-time inspection data, and digital traceability enhance supplier credibility and support long-term contract negotiations. Finally, prioritize sustainability actions that have measurable impact, such as lower-carbon production routes and recyclable material selection, because these steps increasingly influence procurement decision criteria across regions.

A synthesis of primary expert interviews, engineering validations, and document-based triangulation to produce a robust, non-forecasting analysis of rotor shaft dynamics

This analysis synthesizes qualitative primary intelligence with structured secondary research to generate an evidence-based perspective on rotor shaft dynamics. Primary inputs included structured interviews with engineers, procurement professionals, and manufacturing leaders across OEMs, tier suppliers, and specialty component vendors, which provided granular insight into design priorities, sourcing constraints, and procurement protocols. These engagements were complemented by technical reviews of engineering standards, materials databases, and manufacturing process documentation to validate performance trade-offs and production feasibility claims.

Secondary inputs encompassed public regulatory documents, industry white papers, patent landscapes, and trade policy announcements to frame the macro environment. Data triangulation techniques were applied to reconcile differing perspectives and to ensure consistency between technical assertions and commercial realities. Where available, case studies of program launches and supplier transitions were analyzed to extract lessons on lead-time management, quality assurance practices, and contractual structures that enable resilience.

Analytical rigor was maintained through cross-validation of interview findings against documented production capabilities and supply chain configurations. Sensitivity analyses were employed to explore the implications of tariff changes and regional shifts on sourcing strategies, without relying on speculative numeric forecasts. Finally, conclusions and recommendations were iteratively refined with subject-matter experts to ensure practical relevance and alignment with current engineering and procurement constraints.

Concluding synthesis emphasizing the centrality of integrated design, material pragmatism, regional manufacturing resilience, and supplier operational excellence in the rotor shaft ecosystem

The EV rotor shaft occupies a pivotal role at the intersection of motor performance, manufacturability, and supply chain strategy. As motor architectures evolve and regulatory and commercial pressures intensify, the technical and procurement choices made today will have lasting implications for vehicle performance and program economics. Key imperatives include tighter integration between motor and shaft design teams, pragmatic adoption of material substitutions where lifecycle and cost criteria align, and strategic regional manufacturing footprints that provide tariff resilience and lead-time advantages.

Moreover, the landscape rewards suppliers that combine technical depth with operational flexibility-those able to demonstrate rigorous quality systems, digital traceability, and the ability to support both OEM and aftermarket channels efficiently. Trade policy changes have accentuated the importance of diversified sourcing and collaborative contractual structures that share risk and incentivize cost-reduction initiatives. In sum, success in this evolving ecosystem will come to those organizations that can simultaneously manage engineering complexity, commercial risk, and sustainability expectations while maintaining responsive supply chain operations.

Product Code: MRR-F774F6336A9B

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. EV Rotor Shaft Market, by Vehicle Type

  • 8.1. Buses
  • 8.2. Commercial Vehicles
  • 8.3. Passenger Cars
    • 8.3.1. Economy
    • 8.3.2. Luxury
    • 8.3.3. Mid Segment
  • 8.4. Two Three Wheelers

9. EV Rotor Shaft Market, by Power Rating

  • 9.1. High Power
  • 9.2. Low Power
  • 9.3. Medium Power
    • 9.3.1. 100-150 Kilowatt
    • 9.3.2. 50-100 Kilowatt

10. EV Rotor Shaft Market, by Shaft Material

  • 10.1. Aluminum
  • 10.2. Composite
  • 10.3. Steel

11. EV Rotor Shaft Market, by Rotor Type

  • 11.1. Induction Motor
  • 11.2. Permanent Magnet Motor
  • 11.3. Synchronous Reluctance Motor

12. EV Rotor Shaft Market, by Cooling Method

  • 12.1. Air Cooled
  • 12.2. Liquid Cooled

13. EV Rotor Shaft Market, by Production Process

  • 13.1. Forging
  • 13.2. Machining

14. EV Rotor Shaft Market, by End User

  • 14.1. Aftermarket
    • 14.1.1. Retail
    • 14.1.2. Workshops
  • 14.2. OEM

15. EV Rotor Shaft Market, by Distribution Channel

  • 15.1. Direct Sales
  • 15.2. Distributors
    • 15.2.1. National
    • 15.2.2. Regional
  • 15.3. Online

16. EV Rotor Shaft Market, by Region

  • 16.1. Americas
    • 16.1.1. North America
    • 16.1.2. Latin America
  • 16.2. Europe, Middle East & Africa
    • 16.2.1. Europe
    • 16.2.2. Middle East
    • 16.2.3. Africa
  • 16.3. Asia-Pacific

17. EV Rotor Shaft Market, by Group

  • 17.1. ASEAN
  • 17.2. GCC
  • 17.3. European Union
  • 17.4. BRICS
  • 17.5. G7
  • 17.6. NATO

18. EV Rotor Shaft Market, by Country

  • 18.1. United States
  • 18.2. Canada
  • 18.3. Mexico
  • 18.4. Brazil
  • 18.5. United Kingdom
  • 18.6. Germany
  • 18.7. France
  • 18.8. Russia
  • 18.9. Italy
  • 18.10. Spain
  • 18.11. China
  • 18.12. India
  • 18.13. Japan
  • 18.14. Australia
  • 18.15. South Korea

19. United States EV Rotor Shaft Market

20. China EV Rotor Shaft Market

21. Competitive Landscape

  • 21.1. Market Concentration Analysis, 2025
    • 21.1.1. Concentration Ratio (CR)
    • 21.1.2. Herfindahl Hirschman Index (HHI)
  • 21.2. Recent Developments & Impact Analysis, 2025
  • 21.3. Product Portfolio Analysis, 2025
  • 21.4. Benchmarking Analysis, 2025
  • 21.5. Bharat Forge Limited
  • 21.6. BorgWarner Inc.
  • 21.7. CITIC Limited
  • 21.8. Continental AG
  • 21.9. Cummins Inc
  • 21.10. Dana Incorporated
  • 21.11. Denso Corporation
  • 21.12. GKN Automotive Limited
  • 21.13. Hitachi Automotive Systems, Ltd.
  • 21.14. Hyundai Motor Company
  • 21.15. JFE Holdings Inc
  • 21.16. Magna International Inc
  • 21.17. Mahindra and Mahindra Limited
  • 21.18. Mitsubishi Materials Corporation
  • 21.19. Nidec Corporation
  • 21.20. NSK Ltd.
  • 21.21. NTN Corporation
  • 21.22. Robert Bosch GmbH
  • 21.23. Sanyo Special Steel Co Ltd
  • 21.24. Schaeffler AG
  • 21.25. Showa Denko Materials Co Ltd
  • 21.26. Thyssenkrupp AG
  • 21.27. Trelleborg AB
  • 21.28. Tsubakimoto Chain Co
  • 21.29. United States Steel Corporation
  • 21.30. Valeo SA
  • 21.31. Voestalpine AG
  • 21.32. ZF Friedrichshafen AG
Product Code: MRR-F774F6336A9B

LIST OF FIGURES

  • FIGURE 1. GLOBAL EV ROTOR SHAFT MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL EV ROTOR SHAFT MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL EV ROTOR SHAFT MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY END USER, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 12. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 13. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 14. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 15. UNITED STATES EV ROTOR SHAFT MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 16. CHINA EV ROTOR SHAFT MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL EV ROTOR SHAFT MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY BUSES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY BUSES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY BUSES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COMMERCIAL VEHICLES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COMMERCIAL VEHICLES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COMMERCIAL VEHICLES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ECONOMY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ECONOMY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ECONOMY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LUXURY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LUXURY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LUXURY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MID SEGMENT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MID SEGMENT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MID SEGMENT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY TWO THREE WHEELERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY TWO THREE WHEELERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY TWO THREE WHEELERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY HIGH POWER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY HIGH POWER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY HIGH POWER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LOW POWER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LOW POWER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LOW POWER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY 100-150 KILOWATT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY 100-150 KILOWATT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY 100-150 KILOWATT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY 50-100 KILOWATT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY 50-100 KILOWATT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY 50-100 KILOWATT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ALUMINUM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ALUMINUM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ALUMINUM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COMPOSITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COMPOSITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COMPOSITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY STEEL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY STEEL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY STEEL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY INDUCTION MOTOR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY INDUCTION MOTOR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY INDUCTION MOTOR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PERMANENT MAGNET MOTOR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PERMANENT MAGNET MOTOR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PERMANENT MAGNET MOTOR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY SYNCHRONOUS RELUCTANCE MOTOR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY SYNCHRONOUS RELUCTANCE MOTOR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY SYNCHRONOUS RELUCTANCE MOTOR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY AIR COOLED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY AIR COOLED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY AIR COOLED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LIQUID COOLED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LIQUID COOLED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY LIQUID COOLED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY FORGING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY FORGING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY FORGING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MACHINING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 74. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MACHINING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 75. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY MACHINING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 76. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 77. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 78. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 79. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 80. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 81. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY RETAIL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 82. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY RETAIL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 83. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY RETAIL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 84. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY WORKSHOPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 85. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY WORKSHOPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 86. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY WORKSHOPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 87. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY OEM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 88. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY OEM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 89. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY OEM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 90. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 91. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DIRECT SALES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 92. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DIRECT SALES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 93. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DIRECT SALES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 94. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 95. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 96. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 97. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 98. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY NATIONAL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 99. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY NATIONAL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 100. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY NATIONAL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 101. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY REGIONAL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 102. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY REGIONAL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 103. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY REGIONAL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 104. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ONLINE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 105. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ONLINE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 106. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY ONLINE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 107. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 108. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 109. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 110. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 111. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 112. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 113. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 114. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 115. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 116. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 117. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 118. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 119. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 120. AMERICAS EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 121. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 122. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 123. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 124. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 125. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 126. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 127. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 128. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 129. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 130. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 131. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 132. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 133. NORTH AMERICA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 134. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 135. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 136. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 137. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 138. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 139. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 140. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 141. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 142. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 143. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 144. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 145. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 146. LATIN AMERICA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 147. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 148. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 149. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 150. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 151. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 152. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 153. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 154. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 155. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 156. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 157. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 158. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 159. EUROPE, MIDDLE EAST & AFRICA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 160. EUROPE EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 161. EUROPE EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 162. EUROPE EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 163. EUROPE EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 164. EUROPE EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 165. EUROPE EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 166. EUROPE EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 167. EUROPE EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 168. EUROPE EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 169. EUROPE EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 170. EUROPE EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 171. EUROPE EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 172. EUROPE EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 173. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 174. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 175. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 176. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 177. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 178. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 179. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 180. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 181. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 182. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 183. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 184. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 185. MIDDLE EAST EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 186. AFRICA EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 187. AFRICA EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 188. AFRICA EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 189. AFRICA EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 190. AFRICA EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 191. AFRICA EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 192. AFRICA EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 193. AFRICA EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 194. AFRICA EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 195. AFRICA EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 196. AFRICA EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 197. AFRICA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 198. AFRICA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 199. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 200. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 201. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 202. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 203. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 204. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 205. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 206. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 207. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 208. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 209. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 210. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 211. ASIA-PACIFIC EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 212. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 213. ASEAN EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 214. ASEAN EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 215. ASEAN EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 216. ASEAN EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 217. ASEAN EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 218. ASEAN EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 219. ASEAN EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 220. ASEAN EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 221. ASEAN EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 222. ASEAN EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 223. ASEAN EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 224. ASEAN EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 225. ASEAN EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 226. GCC EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 227. GCC EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 228. GCC EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 229. GCC EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 230. GCC EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 231. GCC EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 232. GCC EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 233. GCC EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 234. GCC EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 235. GCC EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 236. GCC EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 237. GCC EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 238. GCC EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 239. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 240. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 241. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 242. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 243. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 244. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 245. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 246. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 247. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 248. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 249. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 250. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 251. EUROPEAN UNION EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 252. BRICS EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 253. BRICS EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 254. BRICS EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 255. BRICS EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 256. BRICS EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 257. BRICS EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 258. BRICS EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 259. BRICS EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 260. BRICS EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 261. BRICS EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 262. BRICS EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 263. BRICS EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 264. BRICS EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 265. G7 EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 266. G7 EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 267. G7 EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 268. G7 EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 269. G7 EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 270. G7 EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 271. G7 EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 272. G7 EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 273. G7 EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 274. G7 EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 275. G7 EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 276. G7 EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 277. G7 EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 278. NATO EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 279. NATO EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 280. NATO EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 281. NATO EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 282. NATO EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 283. NATO EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 284. NATO EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 285. NATO EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 286. NATO EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 287. NATO EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 288. NATO EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 289. NATO EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 290. NATO EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 291. GLOBAL EV ROTOR SHAFT MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 292. UNITED STATES EV ROTOR SHAFT MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 293. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 294. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 295. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 296. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 297. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 298. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 299. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 300. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 301. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 302. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 303. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 304. UNITED STATES EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
  • TABLE 305. CHINA EV ROTOR SHAFT MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 306. CHINA EV ROTOR SHAFT MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 307. CHINA EV ROTOR SHAFT MARKET SIZE, BY PASSENGER CARS, 2018-2032 (USD MILLION)
  • TABLE 308. CHINA EV ROTOR SHAFT MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 309. CHINA EV ROTOR SHAFT MARKET SIZE, BY MEDIUM POWER, 2018-2032 (USD MILLION)
  • TABLE 310. CHINA EV ROTOR SHAFT MARKET SIZE, BY SHAFT MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 311. CHINA EV ROTOR SHAFT MARKET SIZE, BY ROTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 312. CHINA EV ROTOR SHAFT MARKET SIZE, BY COOLING METHOD, 2018-2032 (USD MILLION)
  • TABLE 313. CHINA EV ROTOR SHAFT MARKET SIZE, BY PRODUCTION PROCESS, 2018-2032 (USD MILLION)
  • TABLE 314. CHINA EV ROTOR SHAFT MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 315. CHINA EV ROTOR SHAFT MARKET SIZE, BY AFTERMARKET, 2018-2032 (USD MILLION)
  • TABLE 316. CHINA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 317. CHINA EV ROTOR SHAFT MARKET SIZE, BY DISTRIBUTORS, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!