Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1929497

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1929497

Wind Blade Mould Systems Market by Manufacturing Process, Material, Mould Type, Application, End Use - Global Forecast 2026-2032

PUBLISHED:
PAGES: 197 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Wind Blade Mould Systems Market was valued at USD 3.48 billion in 2025 and is projected to grow to USD 3.75 billion in 2026, with a CAGR of 8.61%, reaching USD 6.21 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 3.48 billion
Estimated Year [2026] USD 3.75 billion
Forecast Year [2032] USD 6.21 billion
CAGR (%) 8.61%

Strategic introduction to the wind blade mould systems landscape and the purpose of this analysis for decision-makers

This report opens with a clear orientation to the wind blade mould systems arena, explaining why these tooling platforms are central to wind turbine performance, manufacturing throughput, and lifecycle economics. It establishes the scope of the study, defines core terminology, and identifies the principal engineering and commercial concerns that guide procurement and design decisions for manufacturers, integrators, and component suppliers. The introduction frames how mould system choices influence aerodynamic precision, material utilization, cure cycle efficiency, and defect mitigation in composite blade manufacture.

Building on that foundation, the introduction outlines the report's intent to translate technical detail into strategic implications for senior decision-makers. It explains the analytical lens applied across process technologies, material pathways, mould architectures, application contexts, and end-use channels. Finally, the section previews the subsequent deep dives and highlights key themes such as manufacturability, supply chain resilience, cost-to-produce considerations, and the integration of automation and digital controls into contemporary mould system practices. This sets expectations for how the evidence and analysis should inform capital allocation, partner selection, and R&D prioritization.

Transformative shifts reshaping wind blade mould engineering automation material strategies and supply dynamics for manufacturers

Recent years have seen a cluster of transformative shifts that are redefining how wind blade mould systems are designed, manufactured, and deployed. First, advances in automation and digital process control are enabling repeatable part quality and shorter cycle times, which in turn change the calculus for investments in different tooling technologies. Simultaneously, material innovations-particularly in carbon fibre and hybrid composites-are prompting re-evaluation of mould tolerances, heating and curing profiles, and release system designs to achieve consistent surface finish and structural performance.

Moreover, evolving supply chain architectures and regional industrial policies have accelerated the diversification of component sourcing and localisation strategies. These developments interact with rising expectations for environmental stewardship, driving increased interest in thermoplastic composites and more efficient resin systems that reduce volatile emissions and waste. As a result, organisations must reassess legacy tooling approaches in favour of modular, adaptable mould platforms that can accommodate multiple processing routes while preserving blade integrity and production flexibility. Taken together, these shifts are creating new competitive dynamics among tooling suppliers, OEMs, and contract manufacturers, and they are compelling a reorientation of capital expenditure and engineering roadmaps.

Cumulative implications of recent United States tariff actions on supply chains procurement strategies and competitive positioning

The imposition of additional tariffs in recent policy cycles has generated cascading effects throughout the supply chain for wind blade mould systems. These trade measures have influenced the cost structure of imported tooling components, raw materials, and specialised equipment, prompting manufacturers to explore alternative sourcing strategies and to accelerate localisation where feasible. The outcome has been a renewed emphasis on supply chain mapping and scenario planning to mitigate exposure to sudden duty increases and to preserve production continuity.

In practice, procurement teams have responded by diversifying supplier panels, qualifying regional partners, and investing in dual-sourcing arrangements that reduce single-point vulnerabilities. Concurrently, tooling suppliers and fabricators are adapting commercial models-such as shifting to engineered-to-order local production or offering service-oriented contracts-to maintain competitiveness in markets where tariff-induced cost differentials have altered buyer behaviour. These shifts also affect the cadence of long-term supplier relationships and the negotiation of contractual protections, including price adjustment clauses and lead-time guarantees. Ultimately, tariffs have underscored the strategic value of resilient supply networks, where near-term cost pressures are balanced against longer-term commitments to quality, consistency, and delivery reliability.

Key segmentation insights that illuminate process choices material pathways mould classifications application contexts and end-use dynamics

A granular view of segmentation reveals how manufacturing choices and material selections fundamentally shape tooling requirements and operational priorities. When examining manufacturing process pathways such as compression moulding, hand layup (including automated hand layup and manual hand layup), resin transfer moulding (closed and open variants), and vacuum infusion (comprising vacuum assisted resin transfer moulding and vacuum bag moulding), it becomes apparent that each route imposes distinct demands on mould design, thermal control, and cycle management. For example, compression moulding environments prioritise robust clamping and high-pressure sealing, whereas vacuum infusion approaches require precise vacuum integrity and controlled flow paths to ensure consistent resin distribution.

Turning to material classification, differences among carbon fibre composite, glass fibre composite, hybrid composite, and thermoplastic composite influence surface finish expectations, resin compatibility, and post-cure handling. Carbon fibre composites often necessitate tooling with tighter tolerances and more sophisticated layup aids to maintain fibre orientation, while thermoplastic composites place a premium on rapid heat management and releasability due to their distinct processing windows. Mould typologies-closed mould and open mould-further condition operational workflows: closed moulds support higher-volume, repeatable processes with integrated heating, whereas open moulds offer greater flexibility for bespoke or low-volume parts but demand heightened quality oversight to control variability.

Application context between offshore and onshore deployments also drives divergent design priorities; offshore blades typically emphasise fatigue resistance and corrosion mitigation over long installation cycles, which feeds back into longer cure cycles and reinforced tooling structures. Finally, end-use channels such as aftermarket and original equipment manufacturer engagement shape commercial and service models for tooling providers, with aftermarket relationships often requiring rapid-turn retrofit solutions and OEM channels focusing on long-term integration and lifecycle support. Taken together, these layered segmentations inform a matrix of tooling attributes that manufacturers and specifiers must balance to achieve both product performance and efficient production.

Regional insights revealing how geographic industrial ecosystems and policy frameworks influence tooling adoption and supply chain resilience

Regional context fundamentally alters the operational calculus for wind blade mould systems, with industrial ecosystems, workforce skills, and regulatory frameworks shaping which technologies and commercial models prevail. In the Americas, established manufacturing clusters and increasing investments in domestic supply chains have fostered closer collaboration between OEMs and local tooling partners, enabling shorter lead times and more responsive aftermarket servicing. This regional orientation supports investments in automation and higher-capacity tooling where labour scarcity and production scale justify upfront capital.

Across Europe, the Middle East and Africa, industrial maturity varies, and policy incentives for renewable energy deployment often intersect with stringent environmental regulations. This creates a market dynamic where tooling innovations that improve energy efficiency, reduce emissions, or extend blade longevity find stronger traction. The region's manufacturers tend to prioritise compliance and lifecycle optimization, which influences acceptance of advanced composites and sophisticated mould systems. In the Asia-Pacific region, a mix of high-volume production hubs and rapidly evolving domestic supply chains produces a dual environment: cost-competitive manufacturing coexists with growing technical capability in precision tooling and automation. As a result, supply chain strategies in this region frequently balance export-oriented scale with incremental investments in process control and quality assurance to meet rising global quality expectations. Recognising these regional distinctions is essential for companies planning capacity expansion, partner selection, and technology transfer strategies.

Strategic overview of the competitive field including supplier capabilities partnerships and value propositions shaping tooling selection

Leading companies in the wind blade mould systems space are differentiating through combinations of technical expertise, service models, and integrated solutions that extend beyond the physical mould. Some suppliers prioritise engineering excellence in high-precision tooling, offering advanced thermal management, composite-specific surface treatments, and embedded sensor systems to enable in-process quality monitoring. Others compete on flexible manufacturing and rapid turnaround, pursuing modular mould designs that support multiple process routes and expedite retooling for different blade geometries. Partnerships and alliances are increasingly common, with tooling firms collaborating with material suppliers, automation integrators, and OEM engineering teams to deliver bundled solutions.

Service propositions have also evolved; successful vendors provide lifecycle support that includes retrofit programs, scheduled maintenance, and on-site technical assistance to preserve tool fidelity across high-cycle production environments. Intellectual property in mould design, process recipes, and digital twins represents a key source of competitive advantage, enabling suppliers to lock in long-term relationships through performance guarantees and shared outcome commitments. Ultimately, the competitive landscape rewards firms that can marry strong engineering depth with adaptive commercial models that address both OEM and aftermarket requirements while meeting rigorous quality and safety standards.

Actionable recommendations for industry leaders to strengthen manufacturing resilience accelerate innovation and optimise total cost of ownership

Industry leaders should prioritise a set of pragmatic actions that balance near-term production needs with long-term strategic agility. First, invest selectively in modular tooling architectures that support multiple manufacturing processes and material systems; this reduces sunk costs as blade designs and resin chemistries evolve. Second, formalise supply chain redundancy through dual sourcing and regional qualification programs, and complement these efforts with contractual protections that mitigate exposure to sudden trade policy shifts. Third, integrate digital process controls and condition monitoring into mould systems to enable predictive maintenance, tighter tolerances, and faster troubleshooting, thereby reducing downtime and scrap rates.

In addition, companies should cultivate deeper partnerships with material suppliers and automation specialists to co-develop tooling that aligns with emerging composite technologies, particularly hybrid and thermoplastic pathways. Workforce development is also critical; invest in training and cross-functional teams that translate advanced engineering capabilities into consistent shop-floor execution. Finally, adopt outcome-based procurement approaches with tooling suppliers, where feasible, to align commercial incentives around throughput, quality, and lifecycle support. Taken together, these measures will strengthen competitiveness, lower effective cost of ownership, and position organisations to capitalise on evolving technology and policy landscapes.

Research methodology describing data synthesis primary and secondary validation and analytical frameworks employed in the study

The analysis underpinning this report combines structured primary research with targeted secondary validation and systems-based synthesis. Primary inputs include in-depth interviews with manufacturing engineers, tooling designers, procurement leads, and service providers, supplemented by site visits and technical reviews of tooling installations. These engagements provide qualitative insights into operational constraints, preferred process routes, and the practical trade-offs that drive tooling decisions. Secondary validation draws upon engineering literature, industry standards, patent filings, and publicly available technical reports to corroborate interview findings and to map technology trajectories.

Analytically, the study applies a multi-dimensional framework that cross-references manufacturing process characteristics, material attributes, mould typologies, application environments, and end-use channels. Comparative case analysis is used to surface best practices and contrasting approaches, while sensitivity reviews assess how shifts in inputs-such as changes in material availability or policy incentives-could alter strategic priorities. Quality control measures include triangulation across independent sources, iterative peer review by domain experts, and the inclusion of vendor- and OEM-provided technical datapoints where available. This robust methodological approach ensures the conclusions are transparent, replicable, and oriented to decision-making needs.

Conclusion summarising strategic imperatives for tooling innovation operational excellence and supply chain adaptation

In conclusion, the wind blade mould systems landscape is at an inflection point where technological progress, material evolution, and policy developments are jointly reshaping manufacturing priorities. Organisations that proactively adopt modular tooling designs, invest in digital process controls, and pursue regionalised supply chain strategies will be better positioned to manage cost volatility and quality expectations. At the same time, collaboration between tooling suppliers, material innovators, and OEM engineering teams will be essential to accelerate the adoption of new composite systems and to ensure manufacturing scalability.

Looking forward, the companies that combine engineering rigor with adaptive commercial models and capacity to upskill their workforce will capture the greatest operational advantages. By aligning capital allocation with strategic imperatives-resilience, performance, and environmental accountability-manufacturers can reduce downtime, improve blade reliability, and support broader deployment objectives. The recommendations and insights presented in this study are intended to guide executives, plant leaders, and procurement professionals as they navigate the complex decisions that determine competitiveness in the evolving landscape of wind blade manufacturing.

Product Code: MRR-0A38069517D9

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Wind Blade Mould Systems Market, by Manufacturing Process

  • 8.1. Compression Moulding
  • 8.2. Hand Layup
    • 8.2.1. Automated Hand Layup
    • 8.2.2. Manual Hand Layup
  • 8.3. Resin Transfer Moulding
    • 8.3.1. Closed Resin Transfer Moulding
    • 8.3.2. Open Resin Transfer Moulding
  • 8.4. Vacuum Infusion
    • 8.4.1. Vacuum Assisted Resin Transfer Moulding
    • 8.4.2. Vacuum Bag Moulding

9. Wind Blade Mould Systems Market, by Material

  • 9.1. Carbon Fiber Composite
  • 9.2. Glass Fiber Composite
  • 9.3. Hybrid Composite
  • 9.4. Thermoplastic Composite

10. Wind Blade Mould Systems Market, by Mould Type

  • 10.1. Closed Mould
  • 10.2. Open Mould

11. Wind Blade Mould Systems Market, by Application

  • 11.1. Offshore
  • 11.2. Onshore

12. Wind Blade Mould Systems Market, by End Use

  • 12.1. Aftermarket
  • 12.2. Original Equipment Manufacturer

13. Wind Blade Mould Systems Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Wind Blade Mould Systems Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Wind Blade Mould Systems Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Wind Blade Mould Systems Market

17. China Wind Blade Mould Systems Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Enercon GmbH
  • 18.6. General Electric Renewable Energy
  • 18.7. Gurit Holding AG
  • 18.8. Hexcel Corporation
  • 18.9. LM Wind Power
  • 18.10. MFG Wind
  • 18.11. Molded Fiber Glass Companies
  • 18.12. Nordex SE
  • 18.13. Senvion S.A.
  • 18.14. Siemens Gamesa Renewable Energy S.A.
  • 18.15. Suzlon Energy Limited
  • 18.16. TPI Composites Inc.
  • 18.17. Vestas Wind Systems A/S
Product Code: MRR-0A38069517D9

LIST OF FIGURES

  • FIGURE 1. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL WIND BLADE MOULD SYSTEMS MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 12. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 13. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COMPRESSION MOULDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COMPRESSION MOULDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COMPRESSION MOULDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY AUTOMATED HAND LAYUP, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY AUTOMATED HAND LAYUP, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY AUTOMATED HAND LAYUP, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUAL HAND LAYUP, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUAL HAND LAYUP, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUAL HAND LAYUP, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CLOSED RESIN TRANSFER MOULDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CLOSED RESIN TRANSFER MOULDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CLOSED RESIN TRANSFER MOULDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OPEN RESIN TRANSFER MOULDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OPEN RESIN TRANSFER MOULDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OPEN RESIN TRANSFER MOULDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM ASSISTED RESIN TRANSFER MOULDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM ASSISTED RESIN TRANSFER MOULDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM ASSISTED RESIN TRANSFER MOULDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM BAG MOULDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM BAG MOULDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM BAG MOULDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CARBON FIBER COMPOSITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CARBON FIBER COMPOSITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CARBON FIBER COMPOSITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY GLASS FIBER COMPOSITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY GLASS FIBER COMPOSITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY GLASS FIBER COMPOSITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HYBRID COMPOSITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HYBRID COMPOSITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HYBRID COMPOSITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY THERMOPLASTIC COMPOSITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY THERMOPLASTIC COMPOSITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY THERMOPLASTIC COMPOSITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CLOSED MOULD, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CLOSED MOULD, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY CLOSED MOULD, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OPEN MOULD, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OPEN MOULD, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OPEN MOULD, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OFFSHORE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OFFSHORE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY OFFSHORE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY ONSHORE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY ONSHORE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY ONSHORE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY AFTERMARKET, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY AFTERMARKET, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY AFTERMARKET, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY ORIGINAL EQUIPMENT MANUFACTURER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY ORIGINAL EQUIPMENT MANUFACTURER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY ORIGINAL EQUIPMENT MANUFACTURER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 71. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 72. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 73. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 74. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 75. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 76. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 77. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 78. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 79. AMERICAS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 80. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 81. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 82. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 83. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 84. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 85. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 86. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 87. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 88. NORTH AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 89. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 90. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 91. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 92. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 93. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 94. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 95. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 96. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 97. LATIN AMERICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 98. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 99. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 100. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 101. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 102. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 103. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 104. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 105. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 106. EUROPE, MIDDLE EAST & AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 107. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 108. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 109. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 110. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 111. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 112. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 113. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 114. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 115. EUROPE WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 116. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 117. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 118. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 119. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 120. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 121. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 122. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 123. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 124. MIDDLE EAST WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 125. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 126. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 127. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 128. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 129. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 130. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 131. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 132. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 133. AFRICA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 134. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 135. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 136. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 137. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 138. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 139. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 140. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 141. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 142. ASIA-PACIFIC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 143. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 144. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 145. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 146. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 147. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 148. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 149. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 150. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 151. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 152. ASEAN WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 153. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 154. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 155. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 156. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 157. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 158. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 159. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 160. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 161. GCC WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 162. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 163. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 164. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 165. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 166. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 167. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 168. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 169. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 170. EUROPEAN UNION WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 171. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 172. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 173. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 174. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 175. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 176. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 177. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 178. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 179. BRICS WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 180. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 181. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 182. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 183. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 184. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 185. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 186. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 187. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 188. G7 WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 189. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 190. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 191. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 192. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 193. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 194. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 195. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 196. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 197. NATO WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 198. GLOBAL WIND BLADE MOULD SYSTEMS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 199. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 200. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 201. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 202. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 203. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 204. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 205. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 206. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 207. UNITED STATES WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 208. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 209. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MANUFACTURING PROCESS, 2018-2032 (USD MILLION)
  • TABLE 210. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY HAND LAYUP, 2018-2032 (USD MILLION)
  • TABLE 211. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY RESIN TRANSFER MOULDING, 2018-2032 (USD MILLION)
  • TABLE 212. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY VACUUM INFUSION, 2018-2032 (USD MILLION)
  • TABLE 213. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 214. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY MOULD TYPE, 2018-2032 (USD MILLION)
  • TABLE 215. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 216. CHINA WIND BLADE MOULD SYSTEMS MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!