PUBLISHER: MarketsandMarkets | PRODUCT CODE: 1801768
PUBLISHER: MarketsandMarkets | PRODUCT CODE: 1801768
The global LiDAR simulation market is projected to reach USD 4.01 billion by 2032, growing from USD 0.93 billion in 2025 at a CAGR of 23.1% during the forecast period.
Scope of the Report | |
---|---|
Years Considered for the Study | 2021-2032 |
Base Year | 2024 |
Forecast Period | 2025-2032 |
Units Considered | Value (USD Million) |
Segments | LiDAR Type, Vehicle Type, Level of Autonomy, Method, Laser Wavelength, Application, and Region |
Regions covered | Asia Pacific, Europe, and North America |
The LiDAR simulation market is rapidly growing, driven by the increasing integration of LiDAR sensors in advanced driver-assistance systems (ADASs) and autonomous vehicles to enhance safety and perception capabilities. This growth is propelled by stringent global safety regulations. An example is the EU's General Safety Regulation 2 (GSR2), which mandates features like LiDAR-enabled automatic emergency braking (AEB), pushing OEMs toward extensive simulation and validation of LiDAR systems.
Additionally, technological advancements in LiDAR have enabled a wider adoption of sophisticated simulation models. Also, the rise in electric vehicles further boosts the demand for realistic and scalable LiDAR simulations to support complex sensor fusion and autonomous navigation. With its higher production capacity and competitive pricing for solid-state LiDARs, Asia Pacific, specifically China, is expanding market accessibility for new players and creating opportunities.
"The level 2/2.5 segment is projected to account for the largest share during the forecast period."
By level of autonomy, the level 2/2.5 segment is projected to account for the largest share of the market during the forecast period due to the increase in the installation of this technology in vehicles worldwide. Partial automation in passenger vehicles at level 2 is increasingly embraced, supported by legal approvals across regions, including the US, Europe, China, India, Japan, and other Asian markets. Equipped with features such as adaptive cruise control and lane-keeping assist integrated with LiDAR technology, these vehicles are becoming standard on many models. With an anticipated global fleet of 28 to 30 million units by 2025, extensive testing is critical to ensure safety and regulatory compliance, particularly with standards like Euro NCAP 2025 emphasizing sensor reliability for mass-market vehicles. The established maturity and low complexity of level 2/2.5 systems, compared to the more complex and less explored levels 3 and 4, have lowered development risks and attracted substantial investment in testing infrastructure. While the widespread adoption of level 2.5 strengthens its market position, its relatively limited autonomy level constrains opportunities for groundbreaking innovation.
Source: Secondary Research, SAE, and MarketsandMarkets Analysis
"The commercial vehicles segment is projected to be the fastest-growing market during the forecast period."
The demand for LiDAR simulation in commercial vehicles (CVs) is growing faster due to the increasing adoption of autonomous technologies in logistics and freight transport. LiDAR enhances safety and efficiency by enabling precise object detection and mapping over long distances. The commercial vehicles sector is witnessing rapid advancements in autonomous driving, focusing on LiDAR-enabled level 3 and level 4 technologies. For example, Daimler Trucks (Germany) has planned to launch SAE Level 4 autonomous trucks by 2027, on its fifth-generation Freightliner (US) Cascadia model in partnership with Torc Robotics (US). The truck will have redundant safety systems and integrated computing and sensor kits.
Additionally, the rise in e-commerce and last-mile delivery demands robust LiDAR systems, accelerating investment in testing infrastructure. The push for automation is significant, but high costs (e.g., LiDAR units still above USD 400) and supply chain disruptions could slow deployment in cost-sensitive commercial vehicle markets like India or Africa. The e-commerce boom supports growth, but economic shifts or alternative technologies (e.g., radar fusion) could challenge LiDAR's dominance, suggesting a niche-driven surge rather than a universal trend.
"Asia Pacific is projected to be the fastest-growing market during the forecast period."
Asia Pacific is projected to be the fastest-growing market, owing to the rising prominence of premium vehicles in the region. China is the most significant player in the LiDAR simulation market. Leading players in China include BYD, Zeekr, XPeng, and NIO. These players offer electric vehicle LiDAR combined with camera and radar to increase China's autonomy level. For example, BYD aims to pivot from its current "God's Eye" level 2+ system to level 3 capability via over-the-air updates.
Additionally, hybrid solid-state LiDAR technology in China is being increasingly adopted in vehicles like the Zeekr Qianli Haohan H9. The vehicle features a multi-LiDAR setup (5 units). These hybrid solid-state LiDARs are popular due to their low cost and high performance. South Korea, too, has been rapidly adopting level 3 autonomy supported by government regulations, allowing models like the Genesis G90 to be used since 2022 and aiming for level 4 commercialization by 2027. OEMs like Hyundai and Kia lead this deployment, supported by pilot zones and policies targeting 50% autonomous vehicles by 2035. Japan, an early adopter of models like the Honda Legend Hybrid since 2021, also has a market presence for level 3 autonomy.
In-depth interviews were conducted with CEOs, marketing directors, other innovation and technology directors, and executives from various key organizations operating in this market.
The LiDAR simulation market is dominated by major players, including Dekra (Germany), AVL (Austria), Valeo (France), RoboSense (China), Luminar Technologies (US), Vector Informak GmbH (Germany), Applied Intuition (US), Cognata (Israel), dSpace GmbH (Germany), and IPG Automotive GmbH (Germany). These companies are expanding their portfolios to strengthen their LiDAR simulation market position.
The report covers the LiDAR simulation market by LiDAR Type (Mechanical LiDAR and Solid-state LiDAR), Vehicle Type (Passenger Cars and Commercial Vehicles), Level of Autonomy (Level 2/2.5, Level 3, and Level 4/5), Method (Testing Method and Simulation Method), Laser Wavelength (Short Infrared Spectrum and Long Wave Infrared Spectrum), Application (Intelligent Park Assist, Night Vision, Traffic Jam Assist, Road Mapping & Localization, and Others), and Region (North America, Asia Pacific, and Europe). The report also covers the competitive landscape and company profiles of significant LiDAR simulation market players. The study further includes an in-depth competitive analysis of the key market players, their company profiles, key observations related to product and business offerings, recent developments, and key market strategies.