PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1716364
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1716364
According to Stratistics MRC, the Global Air Quality Control System Market is accounted for $116.3 billion in 2025 and is expected to reach $203.2 billion by 2032, growing at a CAGR of 8.3% during the forecast period. A technology or group of devices called an Air Quality Control System is made to control and lessen air pollutants that are emitted into the atmosphere. Manufacturing facilities, power plants, and industrial sites frequently use it to reduce the emissions of hazardous gases, particulate matter, and volatile chemicals. By preserving safer and cleaner air quality levels, these systems contribute to environmental sustainability, human health protection, and regulatory compliance.
According to the US Environmental Protection Agency (EPA), indoor air pollutants can be 2 to 5 times higher than outdoor levels, highlighting the need for effective air quality control systems in buildings.
Increasing industrialization and urbanization
The swift advancement of industrialization and urbanization has markedly heightened the requirement for systems to manage air quality. The expansion of industries and urban population growth has resulted in increased air pollution, requiring sophisticated systems for monitoring and reducing pollutants. Investments in these systems are being propelled by rigorous governmental restrictions on air pollution and increasing public awareness of health hazards linked to poor air quality. Moreover, sectors including power generation, automotive, and mining are implementing solutions for controlling air quality to adhere to environmental regulations, hence promoting market expansion.
Complexity of integration with existing processes
The incorporation of air quality control systems into current industrial processes presents considerable obstacles owing to technological intricacies and elevated expenses. Legacy infrastructure frequently necessitates significant alterations to integrate contemporary control systems, which can be both labor-intensive and costly. Furthermore, the deficiency of proficient staff to oversee modern technologies exacerbates implementation challenges. These factors inhibit small and medium-sized firms from implementing technologies for managing air quality, constraining market growth. Moreover, companies encounter operational disturbances during integration, potentially affecting productivity.
Expansion in developing economies
Emerging economies provide profitable prospects for the air quality control systems market owing to swift industrialization and urbanization. Governments in these areas are enacting rigorous environmental rules to address increasing pollution levels, fostering a conducive atmosphere for market expansion. Moreover, escalating investments in smart cities and renewable energy initiatives are propelling the demand for advanced technologies to monitor air quality. Furthermore, public awareness initiatives on the health effects of air pollution are motivating enterprises and residential areas to implement these systems, thus enhancing market penetration in emerging markets.
Availability of cheaper, less effective alternatives
The presence of inexpensive alternatives presents a considerable risk to the implementation of sophisticated air quality management systems. Numerous sectors in price-sensitive marketplaces use cost-effective solutions that may fail to comply with rigorous regulatory criteria or provide satisfactory outcomes. Moreover, these alternatives frequently lack sophisticated functionalities such as real-time monitoring and data analytics, which are essential for thorough air quality control. The spread of counterfeit items diminishes the confidence of high-quality systems, thereby affecting market growth.
The Covid-19 epidemic exerted a varied influence on the air quality control systems industry. Although industrial shutdowns temporarily diminished emissions, the demand for indoor air quality solutions escalated due to increased health concerns. Moreover, governments prioritized clean air programs within recovery plans, catalyzing investments in sophisticated monitoring technologies. Nevertheless, supply chain disruptions and economic uncertainty postponed project implementations in many regions. The pandemic highlighted the necessity of preserving healthy ecosystems, hence increasing sustained demand for air quality management systems across multiple sectors.
The particulate matter (PM) segment is expected to be the largest during the forecast period
The particulate matter (PM) segment is expected to account for the largest market share during the forecast period owing to its essential function in detecting hazardous pollutants such as PM2.5 and PM10, which present significant health threats. Global regulatory authorities stress the importance of monitoring particulate matter as part of strict environmental rules aimed at reducing breathing problems linked to tiny particles. Moreover, innovations in real-time monitoring systems improve precision and effectiveness in measuring PM levels in industrial and urban environments. Furthermore, increasing public knowledge of the detrimental impacts of particle pollution fosters extensive implementation in residential, commercial, and industrial sectors.
The indoor air quality control segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the indoor air quality control segment is predicted to witness the highest growth rate owing to rising apprehensions regarding indoor pollution from dust, allergens, volatile organic compounds (VOCs), and infections. The proliferation of smart home technologies and sustainable construction practices has intensified the demand for interior solutions that promote healthy living conditions. Furthermore, governmental rules requiring routine examinations of indoor air quality in workplaces substantially enhance the growth of this sector. Moreover, developments like IoT-enabled devices improve real-time monitoring capabilities, rendering indoor air quality control systems more efficient and accessible.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, ascribed to swift industrialization and urbanization in nations such as China and India. These nations encounter significant air pollution issues stemming from elevated emissions produced by industrial facilities and transportation systems. Governmental activities that advocate for renewable energy adoption and impose stricter emission regulations stimulate the market for sophisticated systems to manage air quality. Moreover, increasing public awareness of health risks associated with inadequate air quality stimulates investments in indoor and outdoor monitoring systems in this area.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by heightened expenditures in smart city initiatives and sustainable energy infrastructure. The burgeoning semiconductor sector in the region is propelling the demand for particulate matter monitoring technologies crucial for upholding cleanroom requirements. Furthermore, favorable governmental regulations designed to diminish industrial emissions foster a climate receptive to the adoption of innovative technologies.
Key players in the market
Some of the key players in Air Quality Control System Market include Mitsubishi Heavy Industries, Ltd., Thermax Ltd, Babcock & Wilcox Enterprises, Inc., Ducon Technologies Inc., General Electric, Fujian Longking Co. Ltd, Siemens AG, FLSmidth & Co. A/S, Johnson Controls International plc, Cummins Inc., Andritz AG, Hitachi, Ltd., Hamon Corporation, Calgon Carbon Corporation, Daikin Industries, Ltd., MANN+HUMMEL Intern. GmbH & Co. KG, and Donaldson Company, Inc.
In September 2024, Cummins India Limited, one of the leading power solutions technology providers, has launched Retrofit Aftertreatment System (RAS), an innovative clean air solution that allows customers to use their existing CPCBII and CPCBI gensets, and comply with the latest genset emission regulations. This highly efficient and indigenously designed retrofit emission control device effectively reduces Particulate Matter (PM), Carbon Monoxide (CO), and Hydrocarbon (HC) emissions from genset exhaust upto 90%. The product is thoughtfully designed to be compact, providing a space saving solution with minimal operational and maintenance expenses.
In June 2024, Babcock & Wilcox (B&W) announced that its B&W Environmental business segment has recently been awarded more than $18 million in contracts to design and supply wet and dry electrostatic precipitator (ESP) rebuilds for particulate emissions control in utility and industrial facilities in the United States and Europe.
In January 2024, Daikin introduced an automated Indoor Air Quality (IAQ) management system that integrates the Daikin IAQ Sensor with the Air Handling Unit (AHU) Modular T Series. This system dynamically adjusts AHU settings to enhance indoor air quality by reducing pollutants and optimizing CO2 levels, humidity, and temperature.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.