PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1734801
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1734801
According to Stratistics MRC, the Global Autonomous Emergency Braking Market is accounted for $54.98 billion in 2025 and is expected to reach $262.18 billion by 2032 growing at a CAGR of 25% during the forecast period. Autonomous Emergency Braking (AEB) is a safety feature in cars those senses when a collision with another car, a pedestrian, or an obstruction is about to happen and automatically applies the brakes to lessen the impact or stop it completely. AEB continuously scans the area surrounding the car using sensors including lidar, radar, and cameras. The braking system is activated to improve safety and maybe prevent accidents or lessen damage during crises if the system detects a high risk of collision and the driver does not respond in time.
Rising road accidents & focus on safety
In an effort to lower the number of fatalities, governments and regulatory agencies are progressively requiring safety measures like Autonomous Emergency Braking (AEB). By automatically applying brakes when a possible accident is detected, AEB systems contribute to increased road safety by preventing collisions. Additionally, consumers' increased knowledge of vehicle safety has influenced their choice to buy automobiles with AEBs. In order to meet consumer demand and comply with laws, automakers are incorporating AEB into more models. As a result of the pressing need for improved vehicle safety and accident avoidance, the AEB market is expanding significantly.
Limitations in adverse conditions
In bad weather, like persistent rain, snow, or fog, which can block sensors and cameras, AEB systems frequently have trouble operating effectively. Slick roads and decreased visibility can hinder or delay the system's ability to detect objects. These dependability problems hinder adoption and erode consumer confidence. Additionally, automakers might have to pay more to create more resilient technologies that work in any setting. As a result, safety issues and technological limitations in difficult circumstances hinder market growth.
Adoption in commercial vehicles & fleets
Fleet managers place a high priority on cost effectiveness and safety, and AEB systems assist cut down on accidents, which lowers insurance and repair costs. AEB's integration is being accelerated by regulatory agencies in a number of nations that require it in commercial vehicles. As e-commerce grows, logistics firms are growing their fleets, which raises the need for cutting-edge safety features. Additionally, AEB improves driver assistance, which lowers human error in lengthy operations. In order to remain competitive and compliant, commercial vehicle manufacturers are progressively implementing AEB.
Technological complexity & liability
High precision and synchronisation are needed for real-time data processing, AI algorithms, and advanced sensors, which frequently causes deployment delays. Implementation is made more difficult by compatibility problems with current vehicle platforms. Furthermore, the possibility of system failure or malfunction raises questions of dependability and safety. Manufacturers are also discouraged by liability concerns because they may be held accountable for mishaps brought on by AEB system malfunctions. These issues reduce customer confidence in autonomous braking technologies and impede their adoption.
Covid-19 Impact
The COVID-19 pandemic had a mixed impact on the Autonomous Emergency Braking (AEB) market. The initial disruptions in production and supply chains slowed down the adoption of AEB technologies. However, as demand for safer vehicles increased post-pandemic, there was a surge in interest in advanced driver-assistance systems (ADAS), including AEB. Regulatory push for vehicle safety standards also contributed to the market's growth, with increased investments in R&D and technology integration driving recovery and expansion in the long term.
The sensors segment is expected to be the largest during the forecast period
The sensors segment is expected to account for the largest market share during the forecast period by enabling vehicles to detect obstacles and potential collisions. They provide real-time data through radar, lidar, and cameras, allowing AEB systems to assess the surrounding environment accurately. With advanced algorithms, these sensors trigger automatic braking when a collision is imminent, improving safety. As sensor technology becomes more sophisticated, the accuracy and efficiency of AEB systems have significantly increased. This progress is driving adoption across various vehicle segments, including passenger cars and commercial vehicles, contributing to the expansion of the AEB market.
The radar-based AEB segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the radar-based AEB segment is predicted to witness the highest growth rate by detecting potential collisions and triggering braking autonomously. These systems utilize radar sensors to monitor the environment, identifying obstacles and detecting sudden changes in speed. As radar offers high accuracy in different weather conditions, it increases AEB reliability and performance, making it a preferred technology for automakers. The growing demand for safety features in vehicles and strict regulatory standards are driving the adoption of radar-based AEB systems. This has led to the rapid growth of the Autonomous Emergency Braking market, with radar being a crucial enabler of safer, smarter vehicles.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to a surge in vehicle production and rising urbanization, particularly in China, Japan, and South Korea. Cost-effective manufacturing and rising middle-class income levels are enabling greater access to vehicles with advanced safety features. Government support through crash safety programs like China NCAP and India NCAP is accelerating AEB integration. While consumer awareness is growing, cost sensitivity still influences adoption rates. However, the increasing presence of global OEMs and domestic innovation are expected to drive AEB system growth across various vehicle segments.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by strong safety regulations and rising consumer awareness. Government mandates by agencies like the NHTSA and growing adoption of ADAS in premium vehicles are pushing automakers to integrate AEB systems. The U.S. leads the region, supported by a robust automotive sector and proactive insurance incentives. Increasing investments in autonomous driving technologies and collaboration between OEMs and tech firms further contribute to the expansion of AEB adoption across passenger and light commercial vehicles.
Key players in the market
Some of the key players profiled in the Autonomous Emergency Braking Market include Bosch, Continental AG, Aptiv PLC, Denso Corporation, Mobileye, Delphi Technologies, TRW Automotive, Valeo SA, Autoliv Inc., Toyota Tsusho Corporation, Magna International Inc., ZF Friedrichshafen AG, Hyundai Mobis, Nissan Motor Co., Ltd., Honda Motor Co., Ltd., BorgWarner Inc., Waymo and Uber ATG.
In February 2024, Bosch partnered with Plus, an automated driving solutions provider, to jointly develop advanced driver-assist and autonomous emergency braking systems for commercial vehicles. This collaboration combines Bosch's sensor technology with Plus's AI-based perception software to enhance safety, particularly in complex traffic scenarios and long-haul trucking applications.
In January 2024, Continental partnered with Ambarella Inc., a semiconductor company specializing in AI vision chips, to develop next-generation Advanced Driver Assistance Systems (ADAS) and Autonomous Driving technologies. This collaboration focuses on enhancing safety features like Autonomous Emergency Braking (AEB) through AI-powered camera and radar fusion.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.