Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1776764

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1776764

Green Hydrogen Market Forecasts to 2032 - Global Analysis By Power Source, Production Scale, Distribution Mode, Technology, Application, End User and By Geography

PUBLISHED:
PAGES: 200+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global Green Hydrogen Market is accounted for $10.9 billion in 2025 and is expected to reach $101.9 billion by 2032 growing at a CAGR of 37.5% during the forecast period. Green hydrogen is hydrogen gas produced through electrolysis powered by renewable energy sources such as solar or wind. This process splits water into hydrogen and oxygen without generating carbon emissions, distinguishing it from grey or blue hydrogen derived from fossil fuels. As a clean energy carrier, green hydrogen is critical to decarbonizing sectors like transportation, industry, and power generation. Its scalability and role in storing intermittent renewable energy make it a cornerstone of global transition toward net-zero emissions.

According to Joule, producing green hydrogen via electrolysis powered by renewable energy can reduce lifecycle CO2 emissions by up to 90% compared to grey hydrogen from natural gas. According to the same study, the energy efficiency of modern electrolyzers for green hydrogen production can reach around 70%.

Market Dynamics:

Driver:

Global decarbonization goals and net-zero commitments

Governments worldwide are implementing stringent climate policies, setting ambitious emission reduction targets, and investing heavily in renewable energy infrastructure. Green hydrogen, produced via electrolysis using solar, wind, or hydro power, is gaining traction as a scalable solution for hard-to-abate sectors such as steel, chemicals, and transportation. Its versatility as both a fuel and feedstock makes it central to long-term energy transition strategies. As nations seek to diversify energy portfolios and reduce fossil fuel dependence, green hydrogen is emerging as a cornerstone of future energy systems.

Restraint:

Scalability challenges of electrolyzers

Current systems often require high capital investment and complex integration with renewable energy sources. Manufacturing bottlenecks, limited availability of critical materials like iridium and platinum, and inconsistent performance across varying load conditions further constrain deployment. Additionally, the lack of standardized designs and modular solutions hampers widespread adoption. These scalability issues pose risks to cost-efficiency and long-term viability, especially in regions with fluctuating renewable energy supply.

Opportunity:

New export markets and international trade

The emergence of green hydrogen as a globally tradable commodity is unlocking new economic opportunities. Countries with abundant renewable resources such as Australia, Chile, and Saudi Arabia are positioning themselves as future exporters, while energy-deficient nations like Japan and South Korea are investing in import infrastructure. Bilateral agreements, green hydrogen corridors, and certification frameworks are being developed to facilitate cross-border trade. This shift is expected to stimulate investment in hydrogen hubs, port infrastructure, and liquefaction technologies, creating a robust international supply chain.

Threat:

Safety concerns and public perception

Hydrogen's flammability and high diffusivity raise safety concerns that can hinder public acceptance and regulatory approvals. Incidents involving leaks or explosions-even if rare-can generate negative media coverage and erode stakeholder confidence. Moreover, the lack of widespread understanding about hydrogen's properties and benefits contributes to skepticism among consumers and policymakers. Without proactive engagement and education, public resistance could slow down project approvals and delay market expansion.

Covid-19 Impact:

The COVID-19 pandemic had a dual impact on the green hydrogen sector. On one hand, supply chain disruptions and project delays affected electrolyzer manufacturing and renewable energy installations, slowing down deployment timelines. On the other hand, the crisis underscored the importance of resilient and sustainable energy systems, prompting governments to include green hydrogen in post-pandemic recovery plans. Stimulus packages and green investment frameworks accelerated pilot projects and R&D initiatives.

The hydroelectric power segment is expected to be the largest during the forecast period

The hydroelectric power segment is expected to account for the largest market share during the forecast period due to its consistent energy output and low operational costs. Unlike solar and wind, hydro offers stable electricity generation, making it ideal for continuous electrolysis processes. Regions with established hydro infrastructure such as Canada, Norway, and parts of Asia are leveraging this advantage to scale hydrogen production. The segment benefits from mature grid connectivity and minimal intermittency, ensuring reliable hydrogen yields.

The alkaline electrolyzer segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the alkaline electrolyzer segment is predicted to witness the highest growth rate driven by their cost-effectiveness and proven technology base. These systems use readily available materials and offer longer operational lifespans, making them attractive for large-scale industrial applications. Recent advancements in membrane design and stack efficiency are enhancing performance, while modular configurations are improving scalability. Their compatibility with fluctuating renewable inputs further supports widespread adoption.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share fueled by aggressive decarbonization targets and abundant renewable energy resources. Countries like China, India, Japan, and Australia are investing in hydrogen infrastructure, electrolyzer manufacturing, and export capabilities. Government-backed initiatives, such as India's National Green Hydrogen Mission and Japan's Hydrogen Roadmap, are catalyzing regional growth. The region's industrial base and rising energy demand make it a prime candidate for hydrogen integration across sectors.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR attributed to favorable policy frameworks and technological innovation. The U.S. Inflation Reduction Act and Canada's Clean Hydrogen Strategy are incentivizing production, infrastructure development, and end-use adoption. Major players are launching gigawatt-scale projects, while startups are pioneering novel electrolyzer designs and hydrogen storage solutions. The region's strong R&D ecosystem and venture capital support are accelerating commercialization.

Key players in the market

Some of the key players in Green Hydrogen Market include Air Liquide, Air Products and Chemicals Inc., Linde plc, Siemens Energy AG, Cummins Inc, Plug Power Inc, Nel ASA, ITM Power plc, McPhy Energy S.A., ENGIE SA, Fortescue Future Industries (FFI), Iberdrola SA, Shell plc, BP plc, Toshiba Energy Systems & Solutions Corporation, China Petroleum & Chemical Corporation, Reliance Industries Limited and Yara International ASA.

Key Developments:

In July 2025, ENGIE commissioned the largest wind farm in the Middle East and Africa, situated in Egypt, marking a milestone in regional renewables deployment. The project adds substantial capacity to ENGIE's global 8.5 GW+ wind and battery portfolio under construction.

In June 2025, Plug Power and Allied Green signed a new 2 GW electrolyzer deal in Uzbekistan, expanding their prior partnership to a total 5 GW global capacity. The agreement supports green ammonia production and represents Plug Power's growing footprint in Central Asia's hydrogen market.

In February 2025, Air Liquide and TotalEnergies announced a joint €1 billion investment to build two large electrolyzers in the Netherlands (200 MW in Rotterdam, 250 MW in Zeeland). These plants are expected to produce over 45,000 tons/year of green hydrogen from offshore wind, cutting ~450,000 tons of CO2 from refineries.

Power Sources Covered:

  • Solar Energy
  • Wind Energy
  • Hydroelectric Power
  • Geothermal Energy
  • Other Power Sources

Production Scales Covered:

  • Small-scale
  • Medium-scale
  • Large-scale

Distribution Modes Covered:

  • Pipeline
  • Liquid Hydrogen
  • Ammonia & Other Carriers
  • On-site Production

Technologies Covered:

  • Proton Exchange Membrane (PEM) Electrolyzer
  • Alkaline Electrolyzer
  • Solid Oxide Electrolyzer
  • Anion Exchange Membrane (AEM) Electrolysis
  • Other Technologies

Applications Covered:

  • Power Generation
  • Transport & Mobility
  • Industrial Feedstock
  • Heating
  • Energy Storage
  • Other Applications

End Users Covered:

  • Chemicals
  • Power & Energy
  • Iron & Steel
  • Refining
  • Chemicals
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliance
Product Code: SMRC30095

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Green Hydrogen Market, By Power Source

  • 5.1 Introduction
  • 5.2 Solar Energy
  • 5.3 Wind Energy
  • 5.4 Hydroelectric Power
  • 5.5 Geothermal Energy
  • 5.6 Other Power Sources

6 Global Green Hydrogen Market, By Production Scale

  • 6.1 Introduction
  • 6.2 Small-scale
  • 6.3 Medium-scale
  • 6.4 Large-scale

7 Global Green Hydrogen Market, By Distribution Mode

  • 7.1 Introduction
  • 7.2 Pipeline
  • 7.3 Liquid Hydrogen
  • 7.4 Ammonia & Other Carriers
  • 7.5 On-site Production

8 Global Green Hydrogen Market, By Technology

  • 8.1 Introduction
  • 8.2 Proton Exchange Membrane (PEM) Electrolyzer
  • 8.3 Alkaline Electrolyzer
  • 8.4 Solid Oxide Electrolyzer
  • 8.5 Anion Exchange Membrane (AEM) Electrolysis
  • 8.6 Other Technologies

9 Global Green Hydrogen Market, By Application

  • 9.1 Introduction
  • 9.2 Power Generation
  • 9.3 Transport & Mobility
  • 9.4 Industrial Feedstock
  • 9.5 Heating
  • 9.6 Energy Storage
  • 9.7 Other Applications

10 Global Green Hydrogen Market, By End User

  • 10.1 Introduction
  • 10.2 Chemicals
  • 10.3 Power & Energy
  • 10.4 Iron & Steel
  • 10.5 Refining
  • 10.6 Chemicals
  • 10.7 Other End Users

11 Global Green Hydrogen Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Air Liquide
  • 13.2 Air Products and Chemicals Inc.
  • 13.3 Linde plc
  • 13.4 Siemens Energy AG
  • 13.5 Cummins Inc
  • 13.6 Plug Power Inc
  • 13.7 Nel ASA
  • 13.8 ITM Power plc
  • 13.9 McPhy Energy S.A.
  • 13.10 ENGIE SA
  • 13.11 Fortescue Future Industries (FFI)
  • 13.12 Iberdrola SA
  • 13.13 Shell plc
  • 13.14 BP plc
  • 13.15 Toshiba Energy Systems & Solutions Corporation
  • 13.16 China Petroleum & Chemical Corporation
  • 13.17 Reliance Industries Limited
  • 13.18 Yara International ASA
Product Code: SMRC30095

List of Tables

  • Table 1 Global Green Hydrogen Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Green Hydrogen Market Outlook, By Power Source (2024-2032) ($MN)
  • Table 3 Global Green Hydrogen Market Outlook, By Solar Energy (2024-2032) ($MN)
  • Table 4 Global Green Hydrogen Market Outlook, By Wind Energy (2024-2032) ($MN)
  • Table 5 Global Green Hydrogen Market Outlook, By Hydroelectric Power (2024-2032) ($MN)
  • Table 6 Global Green Hydrogen Market Outlook, By Geothermal Energy (2024-2032) ($MN)
  • Table 7 Global Green Hydrogen Market Outlook, By Other Power Sources (2024-2032) ($MN)
  • Table 8 Global Green Hydrogen Market Outlook, By Production Scale (2024-2032) ($MN)
  • Table 9 Global Green Hydrogen Market Outlook, By Small-scale (2024-2032) ($MN)
  • Table 10 Global Green Hydrogen Market Outlook, By Medium-scale (2024-2032) ($MN)
  • Table 11 Global Green Hydrogen Market Outlook, By Large-scale (2024-2032) ($MN)
  • Table 12 Global Green Hydrogen Market Outlook, By Distribution Mode (2024-2032) ($MN)
  • Table 13 Global Green Hydrogen Market Outlook, By Pipeline (2024-2032) ($MN)
  • Table 14 Global Green Hydrogen Market Outlook, By Liquid Hydrogen (2024-2032) ($MN)
  • Table 15 Global Green Hydrogen Market Outlook, By Ammonia & Other Carriers (2024-2032) ($MN)
  • Table 16 Global Green Hydrogen Market Outlook, By On-site Production (2024-2032) ($MN)
  • Table 17 Global Green Hydrogen Market Outlook, By Technology (2024-2032) ($MN)
  • Table 18 Global Green Hydrogen Market Outlook, By Alkaline Electrolyzer (2024-2032) ($MN)
  • Table 19 Global Green Hydrogen Market Outlook, By Solid Oxide Electrolyzer (2024-2032) ($MN)
  • Table 20 Global Green Hydrogen Market Outlook, By Anion Exchange Membrane (AEM) Electrolysis (2024-2032) ($MN)
  • Table 21 Global Green Hydrogen Market Outlook, By Other Technologies (2024-2032) ($MN)
  • Table 22 Global Green Hydrogen Market Outlook, By Application (2024-2032) ($MN)
  • Table 23 Global Green Hydrogen Market Outlook, By Power Generation (2024-2032) ($MN)
  • Table 24 Global Green Hydrogen Market Outlook, By Transport & Mobility (2024-2032) ($MN)
  • Table 25 Global Green Hydrogen Market Outlook, By Industrial Feedstock (2024-2032) ($MN)
  • Table 26 Global Green Hydrogen Market Outlook, By Heating (2024-2032) ($MN)
  • Table 27 Global Green Hydrogen Market Outlook, By Energy Storage (2024-2032) ($MN)
  • Table 28 Global Green Hydrogen Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 29 Global Green Hydrogen Market Outlook, By End User (2024-2032) ($MN)
  • Table 30 Global Green Hydrogen Market Outlook, By Chemicals (2024-2032) ($MN)
  • Table 31 Global Green Hydrogen Market Outlook, By Power & Energy (2024-2032) ($MN)
  • Table 32 Global Green Hydrogen Market Outlook, By Iron & Steel (2024-2032) ($MN)
  • Table 33 Global Green Hydrogen Market Outlook, By Refining (2024-2032) ($MN)
  • Table 34 Global Green Hydrogen Market Outlook, By Chemicals (2024-2032) ($MN)
  • Table 35 Global Green Hydrogen Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!