PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1889447
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1889447
According to Stratistics MRC, the Global Thermal Energy Storage Market is accounted for $2.5 billion in 2025 and is expected to reach $3.8 billion by 2032, growing at a CAGR of 5.8% during the forecast period. Thermal energy storage focuses on systems that store energy as heat or cold using materials such as molten salts, phase-change materials, or chilled water. It serves applications in power generation, district heating and cooling, and industrial processes. Benefits include shifting energy use from peak to off-peak periods, enabling higher integration of renewables, improving system efficiency, reducing operating costs, and stabilizing energy supply for buildings and grids.
According to IRENA's technology outlooks and energy storage analyses, global thermal energy storage (TES) capacity is expected to grow rapidly IRENA estimates TES deployments could reach the hundreds of GWh scale by 2030 as a flexibility solution for renewables.
Grid Modernization & Renewable Integration
The global push for grid modernization and the rapid integration of intermittent renewable sources, like solar and wind, are primary drivers for the thermal energy storage market. These systems are increasingly vital for balancing supply and demand, storing excess energy during peak generation for use during periods of low output. By providing a reliable and cost-effective solution for energy shifting and enhancing grid stability, thermal storage directly supports decarbonization goals. This is in line with global energy transition policies, which will keep the market growing and attract more investment.
Technical & Site-Specific Challenges
Significant technical and site-specific challenges temper market expansion. The performance and economic viability of thermal storage systems are highly dependent on local factors, including geological conditions for large-scale projects and specific climate demands. Furthermore, technical hurdles related to materials science, such as maintaining the integrity of phase change materials over thousands of cycles, pose reliability concerns. These complexities can lead to extended project development times and higher initial capital costs, deterring potential adopters.
Expansion in Industrial Applications
A significant growth opportunity lies in the expansion of thermal energy storage within industrial applications. Industries with high-temperature process heat requirements, such as manufacturing, food processing, and chemicals, are seeking to reduce their reliance on fossil fuels and lower energy costs. Thermal storage can effectively store waste heat or solar thermal energy for later use in these processes. This application cuts operational expenses and helps corporations meet stringent sustainability targets, opening a substantial new market segment.
Competition from Battery Storage
The most prominent threat to the thermal energy storage market is the intense competition from rapidly advancing battery storage technologies, particularly lithium-ion. Batteries benefit from strong policy support, falling costs, and high public recognition for electricity storage. While thermal storage often has advantages in duration and cost for long-duration applications, the versatility and modularity of battery systems attract a larger share of current investment. This competition for project funding and market mindshare poses a persistent challenge.
The COVID-19 pandemic initially disrupted the thermal energy storage market, causing supply chain bottlenecks and delaying project construction due to lockdowns and social distancing measures. A temporary reduction in energy demand and capital expenditure freezes from utilities and industries further slowed new investments in 2020. However, the recovery phase has underscored the importance of energy resilience and sustainability. Furthermore, government stimulus packages focusing on green infrastructure have since accelerated project pipelines, helping the market rebound and positioning it for stronger long-term growth.
The sensible heat storage segment is expected to be the largest during the forecast period
The sensible heat storage segment is expected to account for the largest market share during the forecast period, attributed to its technological maturity, reliability, and proven track record in large-scale applications such as concentrated solar power (CSP) plants. These systems benefit from lower technological risk and cost-effectiveness for utility-scale storage capacity. Moreover, the extensive existing infrastructure and operational experience make sensible heat the default choice for many large-scale industrial and power generation projects, ensuring its continued market leadership.
The phase change materials (PCMs) segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the phase change materials (PCMs) segment is predicted to witness the highest growth rate, driven by PCMs' superior energy density, which allows for much more compact storage systems compared to sensible heat. This characteristic is crucial for space-constrained applications in building HVAC and commercial cooling. Additionally, ongoing R&D is successfully addressing previous cost and stability limitations, making PCMs increasingly viable. The strong demand for efficient thermal management in the construction and electronics sectors is a key factor propelling this segment's rapid expansion.
During the forecast period, the Europe region is expected to hold the largest market share. The European Union's stringent regulatory framework and ambitious binding targets for renewable energy and carbon neutrality firmly anchor this leadership. Supportive government policies, subsidies, and a high concentration of leading technology providers create a fertile environment for adoption. Furthermore, well-established district heating systems across Northern and Central Europe provide a ready-made infrastructure for integrating large-scale thermal storage, solidifying the region's dominant position in the global market.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, fueled by massive investments in renewable energy infrastructure, particularly in China and India, to meet soaring electricity demand and address severe air pollution. The region's rapid industrialization presents a major opportunity for industrial thermal storage applications to reduce energy costs. Moreover, supportive government initiatives and the increasing installation of concentrated solar power plants are key drivers positioning Asia Pacific as the fastest-growing thermal energy storage market globally.
Key players in the market
Some of the key players in Thermal Energy Storage Market include Siemens Energy AG, Abengoa S.A., Aalborg CSP A/S, CALMAC Corporation, EVAPCO, Inc., Rondo Energy, Inc., Antora Energy, Inc., EnergyNest AS, Brenmiller Energy Ltd., Malta Inc., Sunamp Ltd, SaltX Technology Holding AB, Burns & McDonnell Engineering Company, Inc., MAN Energy Solutions SE, Dunham-Bush Limited, Baltimore Aircoil Company, DN Tanks, Inc., and Heliogen, Inc.
In October 2025, Aalborg CSP published an update explaining its concept for converting coal-fired power plants into large-scale thermal storage facilities using pit and tank TES to store renewable heat for later use. This positions thermal storage as a repurposing pathway for legacy coal assets.
In October 2025, Rondo Energy announced the start of commercial operation of a 100 MWh Rondo Heat Battery in California, described as the world's largest industrial heat battery and a highly efficient form of electric thermal energy storage providing 24-hour steam from off-grid solar.
In June 2024, Antora announced a $14.5 million ARPA-E award to accelerate launch of its combined heat-and-power thermal battery product, aimed at providing long-duration, high-temperature TES for industry.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.