Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1876167

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1876167

The Global Li-ion and Next-Gen Battery Market 2026-2036

PUBLISHED:
PAGES: 909 Pages, 249 Tables, 187 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 1608
PDF (Corporate License)
USD 2144
PDF (Global Enterprise License)
USD 2613
PDF (Global Enterprise and Subsidiaries License)
USD 2948

Add to Cart

The global lithium-ion battery market is undergoing significant transformation, driven primarily by the electrification of transportation, expansion of renewable energy storage, and continued demand from consumer electronics. Current lithium-ion technology dominates commercial applications due to its established performance characteristics, manufacturing scalability, and improving cost structure, though it is approaching theoretical performance limits that necessitate development of next-generation alternatives.

Electric vehicles represent the largest application segment, with passenger cars, commercial vehicles, and two/three-wheelers collectively accounting for the majority of battery demand growth. This shift reflects regulatory pressures to reduce emissions, improvements in battery energy density enabling practical driving ranges, and expanding charging infrastructure. Regional adoption patterns vary considerably, with China leading in deployment scale, Europe advancing through policy mandates, and North America accelerating adoption through recent incentive programs. Commercial vehicle electrification progresses particularly in urban bus fleets and last-mile delivery applications, where total cost of ownership economics prove favorable despite higher upfront costs.

Stationary energy storage represents a rapidly expanding application driven by renewable energy integration requirements. Grid-scale battery systems provide essential services including frequency regulation, peak demand management, and renewable energy firming to address solar and wind intermittency. Lithium iron phosphate (LFP) chemistry dominates this segment due to cost-effectiveness, safety characteristics, and cycle life exceeding 6,000-10,000 cycles. Residential and commercial storage systems complement utility-scale deployments, offering backup power, demand charge reduction, and solar self-consumption optimization.

Consumer electronics, while representing the market's historical foundation, now exhibits slower growth as smartphone and laptop markets mature. However, absolute demand continues expanding through wearable devices, power tools, and emerging product categories. This segment drove early lithium-ion development and manufacturing scale, establishing supply chains and production capabilities that now support transportation and stationary storage applications.

Current lithium-ion technology relies predominantly on graphite anodes and various cathode chemistries including nickel manganese cobalt (NMC), lithium iron phosphate (LFP), and nickel cobalt aluminum (NCA). Cathode selection involves trade-offs between energy density, cost, cycle life, and safety. NMC offers balanced performance and dominates premium electric vehicles, while LFP gains market share in cost-sensitive applications and stationary storage despite lower energy density. Anode materials are transitioning from pure graphite toward silicon-graphite composites, with silicon content gradually increasing from current levels of 5-10% toward 30-50% as manufacturing addresses volume expansion challenges.

Next-generation battery technologies under development aim to overcome lithium-ion's inherent limitations. Solid-state batteries replace liquid electrolytes with solid ion conductors, enabling lithium metal anodes and potentially doubling energy density while improving safety. However, challenges remain in achieving adequate ionic conductivity, maintaining stable interfaces during cycling, and developing scalable manufacturing processes. Multiple companies target commercial introduction between 2025-2028, initially in premium applications.

Lithium-sulfur batteries offer theoretical energy densities approaching 500-600 Wh/kg through sulfur's high specific capacity, though practical implementation faces obstacles including polysulfide dissolution, poor sulfur conductivity, and limited cycle life. Development focuses on cathode architectures that physically confine polysulfides, electrolyte formulations suppressing shuttle effects, and lithium metal anode stabilization.

Sodium-ion batteries present a cost-effective alternative using abundant sodium resources, targeting stationary storage and entry-level electric vehicles where lower energy density proves acceptable. Lithium titanate (LTO) serves specialized applications requiring exceptional fast-charging capability and ultra-long cycle life despite energy density penalties. Other emerging technologies including lithium-metal, aluminum-ion, and various flow battery chemistries address specific application requirements where conventional lithium-ion proves suboptimal.

The battery industry faces ongoing challenges including supply chain constraints for critical materials like lithium, cobalt, and nickel; manufacturing scale-up requirements; safety and reliability validation; and establishing recycling infrastructure for circular economy implementation. Regional governments increasingly prioritize domestic manufacturing capacity and supply chain security, while technological development continues across materials science, cell design, manufacturing processes, and battery management systems. The trajectory toward widespread electrification depends fundamentally on continued battery technology advancement, cost reduction, and addressing resource availability constraints through both improved lithium-ion variants and successful commercialization of next-generation alternatives.

"The Global Li-ion and Next-Gen Battery Market 2026-2036" delivers authoritative analysis of the evolving battery technology landscape, providing essential insights for stakeholders navigating the transition from conventional lithium-ion to next-generation battery architectures through 2036.

The report encompasses exhaustive coverage of established and emerging battery technologies, including lithium-ion variants, solid-state batteries, sodium-ion systems, lithium-sulfur, lithium-metal, aluminum-ion, and redox flow batteries. Detailed market forecasts quantify demand trajectories across electric vehicles (passenger cars, commercial vehicles, buses, trucks, micro-EVs), grid-scale energy storage, residential and commercial installations, consumer electronics, and industrial applications. Regional market dynamics, technology adoption patterns, and competitive landscapes receive granular examination across all major geographies.

Technical analysis explores critical materials innovation driving performance improvements, including silicon anodes, high-nickel cathodes (NMC, NCA), lithium iron phosphate (LFP), lithium manganese iron phosphate (LMFP), lithium nickel manganese oxide (LNMO), graphene coatings, carbon nanotubes, and advanced electrolyte formulations. The report addresses manufacturing scalability challenges, cost reduction pathways, supply chain evolution, and recycling technologies through hydrometallurgical, pyrometallurgical, and direct recycling methodologies.

Emerging technologies receive comprehensive treatment, with detailed assessments of solid-state battery development (oxide, sulfide, and polymer electrolytes), semi-solid-state architectures, structural battery composites, flexible and wearable batteries, transparent batteries, degradable systems, and printed battery technologies. Specialized chapters examine artificial intelligence applications in battery development, cell design innovations including cell-to-pack and cell-to-chassis architectures, bipolar configurations, and hybrid battery systems.

Market drivers, regulatory frameworks, sustainability considerations, and PFAS elimination strategies provide context for technology transitions. The report quantifies addressable markets, technology penetration rates, pricing dynamics, and profitability outlooks across chemistry types and application segments. Energy density evolution, fast-charging capabilities, cycle life improvements, and safety enhancements receive detailed technical evaluation alongside commercialization timelines and automotive OEM deployment strategies.

Key Report Features:

  • Comprehensive market forecasts through 2036 with historical data from 2018, including GWh demand projections and market value assessments across all battery technologies and application segments
  • Detailed analysis of 20+ battery chemistries and architectures, from conventional lithium-ion variants to cutting-edge solid-state and beyond-lithium technologies
  • Extensive coverage of electric vehicle battery requirements across passenger cars, commercial vehicles, buses, trucks, construction equipment, trains, boats, and micro-mobility
  • Grid storage market intelligence spanning utility-scale installations, commercial and industrial systems, residential applications, and microgrid deployments
  • Material-level analysis of anodes (graphite, silicon, lithium titanate, lithium-metal), cathodes (NMC, LFP, NCA, LMFP, LNMO), electrolytes, separators, binders, and conductive additives
  • Manufacturing technology evaluation including production methods, cost structures, capacity expansion plans, and regional manufacturing strategies
  • Recycling technologies and circular economy strategies with comparative analysis of direct, hydrometallurgical, and pyrometallurgical approaches
  • Technology roadmaps detailing pathways to 350+ Wh/kg energy density, fast-charging capabilities, and extended cycle life
  • Regulatory analysis including PFAS elimination requirements, safety standards, and environmental compliance
  • Supply chain mapping covering raw materials, component manufacturing, cell production, and pack assembly
  • SWOT analyses for each major battery technology identifying strengths, weaknesses, opportunities, and threats
  • Competitive intelligence with strategic positioning analysis and technology differentiation assessment
  • 249 detailed tables presenting quantitative market data, technical specifications, and comparative analyses
  • 187 figures including market forecasts, technology roadmaps, process schematics, and competitive landscapes

The report features comprehensive profiles of 405 leading companies including 2D Fab AB, 24M Technologies, 3DOM Inc., 6K Energy, Abound Energy, AC Biode, ACCURE Battery Intelligence, Achelous Pure Metal Company, Accu't, Addionics, Advano, Agora Energy Technologies, Aionics, AirMembrane Corporation, Allegro Energy, Alsym Energy, Altairnano/Yinlong, Altris AB, Aluma Power, Altech Batteries, Ambri, AMO Greentech, Ampcera, Amprius, AMTE Power, Anaphite Limited, Anhui Anwa New Energy, Anthro Energy, APB Corporation, Appear, Ateios Systems, Atlas Materials, Australian Advanced Materials, Australian Vanadium Limited, AVESS, Avanti Battery Company, AZUL Energy, BAK Power Battery, BASF, BattGenie, Basquevolt, Base Power, Bedimensional, Beijing WeLion, Bemp Research, BenAn Energy Technology, BGT Materials, Big Pawer, Bihar Batteries, Biwatt Power, Black Diamond Structures, Blackstone Resources, Blue Current, Blue Solutions, Blue Spark Technologies, Bodi, Brill Power, BrightVolt, Broadbit Batteries, BTR New Energy Materials, BTRY, BYD Company Limited, Cabot Corporation, California Lithium Battery, CAMX Power, CAPCHEM, CarbonScape, CBAK Energy Technology, CCL Design, CEC Science & Technology, CATL, CellCube, CellsX, Central Glass, CENS Materials, CERQ, Ceylon Graphene Technologies, Cham Battery Technology, Chasm Advanced Materials, Chemix, Chengdu Baisige Technology, China Sodium-ion Times, Citrine Informatics, Clarios, Clim8, CMBlu Energy AG, Connexx Systems, Conovate, Coreshell, Customcells, Cymbet, Daejoo Electronic Materials, DFD, Domolynx, Dotz Nano, Dreamweaver International, Eatron Technologies, EBS Square, Ecellix, Echion Technologies, Eclipse, EcoPro BM, ElecJet, Electroflow Technologies, Elestor, Elegus Technologies, E-Magy, Emerald Battery Labs, Energy Storage Industries, Enerpoly AB, Enfucell Oy, Energy Plug Technologies, Enevate, EnPower Greentech, Enovix, Ensurge Micropower ASA, E-Zinc, Eos Energy, Enzinc, Eonix Energy, ESS Tech, Estes Energy Solutions, EthonAI, EticaAG, EVE Energy, Exencell New Energy, Factorial Energy, Faradion Limited, Farasis Energy, FDK Corporation, Feon Energy, FinDreams Battery, FlexEnergy LLC, Flint, Flow Aluminum, Flux XII, Forge Nano, Forsee Power, Fraunhofer ENAS, Front Edge Technology, Fuelium, Fuji Pigment, Fujitsu Laboratories, GAC, Ganfeng Lithium, Gelion Technologies, Geyser Batteries, General Motors, GDI, Global Graphene Group, Gnanomat, Gotion High Tech, GQenergy, Grafentek, Grafoid, Graphene Batteries AS, Graphene Manufacturing Group, Great Power Energy, Green Energy Storage, Grinergy, GRST, GridFlow, Grepow, Group14 Technologies, Guoke Tanmei New Materials, GUS Technology, H2 Inc., Hansol Chemical, HE3DA, Heiwit, Hexalayer LLC, High Performance Battery Holding AG, HiNa Battery Technologies, Hirose Paper Mfg, HiT Nano, Hitachi Zosen Corporation, Horizontal Na Energy, HPQ Nano Silicon Powders, Hua Na New Materials, Hybrid Kinetic Group, HydraRedox Iberia, IBU-tec Advanced Materials AG, Idemitsu Kosan, Ilika plc, Indi Energy, INEM Technologies, Inna New Energy, Innolith, InnovationLab, Inobat, Intecells, Intellegens, Invinity Energy Systems, Ionblox, Ionic Materials, Ionic Mineral Technologies, Ion Storage Systems LLC, Iontra, I-Ten SA, Janaenergy Technology, Jenax, Jiana Energy, JIOS Aerogel, JNC Corporation, Johnson Energy Storage, Johnson Matthey, Jolt Energy Storage, JR Energy Solution, Kemiwatt, Kite Rise Technologies, KoreaGraph, Korid Energy/AVESS, Koura, Kusumoto Chemicals, Largo, Le System, Lepu Sodium Power, LeydenJar Technologies, LG Energy Solutions, LiBest, Libode New Material, LiCAP Technologies, Li-Fun Technology, Li-Metal Corp, LiNa Energy, LIND Limited, Lionrock Batteries, LionVolt BV, Li-S Energy, Lithium Werks BV, LIVA Power Management Systems, Lucky Sodium Storage, Luxera Energy, Lyten, Merck, Microvast, Mitsubishi Chemical Corporation, Molyon, Monolith AI, Moonwat, mPhase Technologies, Murata Manufacturing, NanoGraf Corporation, Nacoe Energy, nanoFlocell, Nanom, Nanomakers, Nano One Materials, NanoPow AS, Nanoramic Laboratories, Nanoresearch, Nanotech Energy, Nascent Materials, Natrium Energy, Nawa Technologies, NDB, NEC Corporation, NEI Corporation, Neo Battery Materials, New Dominion Enterprises, Nexeon, NGK Insulators, NIO, Nippon Chemicon, Nippon Electric Glass, Noco-noco, Noon Energy, Nordische Technologies, Novonix, Nuriplan, Nuvola Technology, Nuvvon and many more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The Li-ion Battery Market in 2025
  • 1.2. Global Market Forecasts to 2036
    • 1.2.1. Addressable markets
    • 1.2.2. Li-ion battery pack demand for XEV (GWh)
      • 1.2.2.1. Battery Chemistry Distribution by Vehicle Type 2036
      • 1.2.2.2. OEM Strategies 2036
    • 1.2.3. Li-ion battery market value for XEV ($B)
      • 1.2.3.1. Market Value Dynamics
      • 1.2.3.2. Price Trajectory Drivers
    • 1.2.4. Semi-solid-state battery market forecast (GWh)
      • 1.2.4.1. Technology Roadmap
      • 1.2.4.2. Competitive Positioning
      • 1.2.4.3. Technology Evolution 2025-2036
    • 1.2.5. Semi-solid-state battery market value ($B)
      • 1.2.5.1. Pricing Dynamics
    • 1.2.6. Solid-state battery market forecast (GWh)
    • 1.2.7. Sodium-ion battery market forecast (GWh)
      • 1.2.7.1. Growth Analysis
    • 1.2.8. Sodium-ion battery market value ($B)
      • 1.2.8.1. Pricing Analysis
      • 1.2.8.2. Profitability Outlook for Sodium-Ion Manufacturers
    • 1.2.9. Li-ion battery demand versus beyond Li-ion batteries demand
      • 1.2.9.1. Market Transition Analysis
      • 1.2.9.2. Long-Term Outlook (Post-2036)
      • 1.2.9.3. Why Beyond Li-ion Remains Limited Through 2036
      • 1.2.9.4. Market Share Trajectories by Technology
    • 1.2.10. BEV car cathode forecast (GWh)
    • 1.2.11. BEV anode forecast (GWh)
    • 1.2.12. BEV anode forecast ($B)
    • 1.2.13. EV cathode forecast (GWh)
    • 1.2.14. EV Anode forecast (GWh)
    • 1.2.15. Advanced anode forecast (GWh)
    • 1.2.16. Advanced anode forecast (S$B)
      • 1.2.16.1. Market Dynamics 2036
  • 1.3. The global market for advanced Li-ion batteries
    • 1.3.1. Electric vehicles
      • 1.3.1.1. Market overview
      • 1.3.1.2. Battery Electric Vehicles
      • 1.3.1.3. Electric buses, vans and trucks
        • 1.3.1.3.1. Electric medium and heavy duty trucks
        • 1.3.1.3.2. Electric light commercial vehicles (LCVs)
        • 1.3.1.3.3. Electric buses
        • 1.3.1.3.4. Micro EVs
      • 1.3.1.4. Electric off-road
        • 1.3.1.4.1. Construction vehicles
        • 1.3.1.4.2. Electric trains
        • 1.3.1.4.3. Electric boats
      • 1.3.1.5. Market demand and forecasts
      • 1.3.1.6. Market Analysis
        • 1.3.1.6.1. BEV Passenger Cars - Dominant Segment
        • 1.3.1.6.2. PHEV Passenger Cars - Transitional Technology:
        • 1.3.1.6.3. Profitability Analysis 2036
        • 1.3.1.6.4. Electric Buses
        • 1.3.1.6.5. Delivery Vans
        • 1.3.1.6.6. Medium-Duty Trucks
        • 1.3.1.6.7. Heavy-Duty Trucks
        • 1.3.1.6.8. Micro-EVs
          • 1.3.1.6.8.1. Micro-EV Market Overview
    • 1.3.2. Grid storage
      • 1.3.2.1. Market overview
      • 1.3.2.2. Technologies
      • 1.3.2.3. Market demand and forecasts
      • 1.3.2.4. Utility-Scale Grid Storage
        • 1.3.2.4.1. Application Categories
      • 1.3.2.5. Key Market Drivers
      • 1.3.2.6. Commercial & Industrial (C&I) Grid Storage
        • 1.3.2.6.1. Application Categories:
      • 1.3.2.7. Residential Grid Storage
        • 1.3.2.7.1. Application Categories
        • 1.3.2.7.2. Market Outlook
    • 1.3.3. Consumer electronics
      • 1.3.3.1. Market overview
      • 1.3.3.2. Technologies
      • 1.3.3.3. Market demand and forecasts
    • 1.3.4. Stationary batteries
      • 1.3.4.1. Market overview
      • 1.3.4.2. Technologies
      • 1.3.4.3. Market demand and forecasts
  • 1.4. Market drivers
  • 1.5. Battery market megatrends
  • 1.6. Advanced materials for batteries
  • 1.7. Motivation for battery development beyond lithium
  • 1.8. Battery chemistries

2. LI-ION BATTERIES

  • 2.1. Types of Lithium Batteries
  • 2.2. Anode materials
    • 2.2.1. Graphite
    • 2.2.2. Lithium Titanate
    • 2.2.3. Lithium Metal
    • 2.2.4. Silicon anodes
  • 2.3. SWOT analysis
  • 2.4. Trends in the Li-ion battery market
  • 2.5. Li-ion technology roadmap
  • 2.6. Silicon anodes
    • 2.6.1. Benefits
    • 2.6.2. Silicon anode performance
    • 2.6.3. Development in li-ion batteries
      • 2.6.3.1. Manufacturing silicon
      • 2.6.3.2. Commercial production
      • 2.6.3.3. Costs
      • 2.6.3.4. Value chain
      • 2.6.3.5. Markets and applications
        • 2.6.3.5.1. EVs
        • 2.6.3.5.2. Consumer electronics
        • 2.6.3.5.3. Energy Storage
        • 2.6.3.5.4. Portable Power Tools
        • 2.6.3.5.5. Emergency Backup Power
      • 2.6.3.6. Future outlook
    • 2.6.4. Consumption
      • 2.6.4.1. By anode material type
      • 2.6.4.2. By end use market
    • 2.6.5. Alloy anode materials
    • 2.6.6. Silicon-carbon composites
    • 2.6.7. Silicon oxides and coatings
    • 2.6.8. Carbon nanotubes in Li-ion
    • 2.6.9. Graphene coatings for Li-ion
    • 2.6.10. Prices
    • 2.6.11. Companies
  • 2.7. Li-ion electrolytes
  • 2.8. Cathodes
    • 2.8.1. Materials
      • 2.8.1.1. High and Ultra-High nickel cathode materials
        • 2.8.1.1.1. Types
        • 2.8.1.1.2. Benefits
        • 2.8.1.1.3. Stability
        • 2.8.1.1.4. Single Crystal Cathodes
        • 2.8.1.1.5. Commercial activity
        • 2.8.1.1.6. Manufacturing
        • 2.8.1.1.7. High manganese content
      • 2.8.1.2. Zero-cobalt NMx
        • 2.8.1.2.1. Overview
        • 2.8.1.2.2. Ultra-high nickel, zero-cobalt cathodes
        • 2.8.1.2.3. Extending the operating voltage
        • 2.8.1.2.4. Operating NMC cathodes at high voltages
      • 2.8.1.3. Lithium-Manganese-Rich (Li-Mn-Rich, LMR-NMC)
        • 2.8.1.3.1. Li-Mn-rich cathodes LMR-NMC
        • 2.8.1.3.2. Stability
        • 2.8.1.3.3. Energy density
        • 2.8.1.3.4. Commercialization
        • 2.8.1.3.5. Hybrid battery chemistry design for manganese-rich
      • 2.8.1.4. Lithium Cobalt Oxide(LiCoO2) - LCO
      • 2.8.1.5. Lithium Iron Phosphate(LiFePO4) - LFP
      • 2.8.1.6. Lithium Manganese Oxide (LiMn2O4) - LMO
      • 2.8.1.7. Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) - NMC
      • 2.8.1.8. Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) - NCA
      • 2.8.1.9. Lithium manganese phosphate (LiMnP)
      • 2.8.1.10. Lithium manganese iron phosphate (LiMnFePO4 or LMFP)
        • 2.8.1.10.1. Key characteristics
        • 2.8.1.10.2. LMFP energy density
        • 2.8.1.10.3. Costs
        • 2.8.1.10.4. Saft phosphate-based cathodes
        • 2.8.1.10.5. Commercialization
        • 2.8.1.10.6. Challenges
        • 2.8.1.10.7. LMFP (lithium manganese iron phosphate) market
        • 2.8.1.10.8. Companies
      • 2.8.1.11. Lithium nickel manganese oxide (LNMO)
        • 2.8.1.11.1. Overview
        • 2.8.1.11.2. High-voltage spinel cathode LNMO
        • 2.8.1.11.3. LNMO energy density
        • 2.8.1.11.4. Cathode chemistry selection
        • 2.8.1.11.5. LNMO (lithium nickel manganese oxide) high-voltage spinel cathodes cost
      • 2.8.1.12. Graphite and LTO
      • 2.8.1.13. Silicon
      • 2.8.1.14. Lithium metal
    • 2.8.2. Alternative Cathode Production
      • 2.8.2.1. Production/Synthesis
      • 2.8.2.2. Commercial development
      • 2.8.2.3. Recycling cathodes
    • 2.8.3. Comparison of key lithium-ion cathode materials
    • 2.8.4. Emerging cathode material synthesis methods
    • 2.8.5. Cathode coatings
  • 2.9. Binders and conductive additives
    • 2.9.1. Materials
  • 2.10. Separators
    • 2.10.1. Materials
  • 2.11. High-Performance Lithium-Ion Systems: Approaching 350 Wh/kg
    • 2.11.1. Energy Density Evolution and Current State
    • 2.11.2. Pathways to 350+ Wh/kg
      • 2.11.2.1. Cathode Advances
      • 2.11.2.2. Anode Advances
      • 2.11.2.3. Electrolyte and Cell Design Optimization
    • 2.11.3. Performance Projections and Technology Roadmap
      • 2.11.3.1. Critical Dependencies and Risk Factors
    • 2.11.4. Commercial Deployment Timeline
  • 2.12. PFAS-Free Battery Additives and Regulatory Transitions
    • 2.12.1. Global Regulatory Trend Analysis
    • 2.12.2. PFAS Materials in Current Battery Manufacturing
    • 2.12.3. Non-PFAS Cathode Binders - The Critical Challenge
    • 2.12.4. Non-PFAS Cathode Binder Technologies
      • 2.12.4.1. Polyacrylic Acid (PAA) and Lithium Polyacrylate (Li-PAA)
      • 2.12.4.2. Carboxymethyl Cellulose (CMC) and Modified Cellulose Derivatives
      • 2.12.4.3. Polyacrylamide (PAM) and Acrylamide Copolymers
      • 2.12.4.4. Styrene-Butadiene Rubber (SBR) and Synthetic Rubber Derivatives
      • 2.12.4.5. Hybrid and Composite Binder Systems
    • 2.12.5. PFAS in Electrolyte Additives - Critical Performance Trade-offs
      • 2.12.5.1. Major PFAS Electrolyte Additives
    • 2.12.6. Market Analysis
  • 2.13. Platinum group metals
  • 2.14. Li-ion battery market players
  • 2.15. Li-ion recycling
    • 2.15.1. Comparison of recycling techniques
    • 2.15.2. Hydrometallurgy
      • 2.15.2.1. Method overview
        • 2.15.2.1.1. Solvent extraction
      • 2.15.2.2. SWOT analysis
    • 2.15.3. Pyrometallurgy
      • 2.15.3.1. Method overview
      • 2.15.3.2. SWOT analysis
    • 2.15.4. Direct recycling
      • 2.15.4.1. Method overview
        • 2.15.4.1.1. Electrolyte separation
        • 2.15.4.1.2. Separating cathode and anode materials
        • 2.15.4.1.3. Binder removal
        • 2.15.4.1.4. Relithiation
        • 2.15.4.1.5. Cathode recovery and rejuvenation
        • 2.15.4.1.6. Hydrometallurgical-direct hybrid recycling
      • 2.15.4.2. SWOT analysis
    • 2.15.5. Other methods
      • 2.15.5.1. Mechanochemical Pretreatment
      • 2.15.5.2. Electrochemical Method
      • 2.15.5.3. Ionic Liquids
    • 2.15.6. Recycling of Specific Components
      • 2.15.6.1. Anode (Graphite)
      • 2.15.6.2. Cathode
      • 2.15.6.3. Electrolyte
    • 2.15.7. Recycling of Beyond Li-ion Batteries
      • 2.15.7.1. Conventional vs Emerging Processes
  • 2.16. Global revenues

3. LITHIUM-METAL BATTERIES

  • 3.1. Technology description
  • 3.2. Solid-state batteries and lithium metal anodes
  • 3.3. Increasing energy density
  • 3.4. Lithium-metal anodes
    • 3.4.1. Overview
  • 3.5. Challenges
  • 3.6. Energy density
  • 3.7. Anode-less Cells
    • 3.7.1. Overview
    • 3.7.2. Benefits
    • 3.7.3. Key companies
  • 3.8. Lithium-metal and solid-state batteries
  • 3.9. Hybrid batteries
  • 3.10. Applications
  • 3.11. SWOT analysis
  • 3.12. Product developers

4. LITHIUM-SULFUR BATTERIES

  • 4.1. Technology description
  • 4.2. Operating principle of lithium-sulfur (Li-S) batteries
    • 4.2.1. Advantages
    • 4.2.2. Challenges
    • 4.2.3. Commercialization
  • 4.3. Costs
  • 4.4. Material composition
  • 4.5. Lithium intensity
  • 4.6. Value chain
  • 4.7. Markets
  • 4.8. SWOT analysis
  • 4.9. Global revenues
  • 4.10. Product developers

5. LITHIUM TITANATE OXIDE (LTO) AND NIOBATE BATTERIES

  • 5.1. Technology description
    • 5.1.1. Lithium titanate oxide (LTO)
    • 5.1.2. Niobium titanium oxide (NTO)
      • 5.1.2.1. Niobium tungsten oxide
      • 5.1.2.2. Vanadium oxide anodes
  • 5.2. Global revenues
  • 5.3. Product developers

6. SODIUM-ION (NA-ION) BATTERIES

  • 6.1. Technology description
    • 6.1.1. Cathode materials
      • 6.1.1.1. Layered transition metal oxides
        • 6.1.1.1.1. Types
        • 6.1.1.1.2. Cycling performance
        • 6.1.1.1.3. Advantages and disadvantages
        • 6.1.1.1.4. Market prospects for LO SIB
      • 6.1.1.2. Polyanionic materials
        • 6.1.1.2.1. Advantages and disadvantages
        • 6.1.1.2.2. Types
        • 6.1.1.2.3. Market prospects for Poly SIB
      • 6.1.1.3. Prussian blue analogues (PBA)
        • 6.1.1.3.1. Types
        • 6.1.1.3.2. Advantages and disadvantages
        • 6.1.1.3.3. Market prospects for PBA-SIB
    • 6.1.2. Anode materials
      • 6.1.2.1. Hard carbons
      • 6.1.2.2. Carbon black
      • 6.1.2.3. Graphite
      • 6.1.2.4. Carbon nanotubes
      • 6.1.2.5. Graphene
      • 6.1.2.6. Alloying materials
      • 6.1.2.7. Sodium Titanates
      • 6.1.2.8. Sodium Metal
    • 6.1.3. Electrolytes
  • 6.2. Comparative analysis with other battery types
  • 6.3. Cost comparison with Li-ion
  • 6.4. Materials in sodium-ion battery cells
  • 6.5. SWOT analysis
  • 6.6. Global revenues
  • 6.7. Product developers
    • 6.7.1. Battery Manufacturers
    • 6.7.2. Large Corporations
    • 6.7.3. Automotive Companies
    • 6.7.4. Chemicals and Materials Firms

7. SODIUM-SULFUR BATTERIES

  • 7.1. Technology description
  • 7.2. Applications
  • 7.3. SWOT analysis

8. ALUMINIUM-ION BATTERIES

  • 8.1. Technology description
  • 8.2. SWOT analysis
  • 8.3. Commercialization
  • 8.4. Global revenues
  • 8.5. Product developers

9. SOLID STATE BATTERIES

  • 9.1. Technology description
    • 9.1.1. Solid-state electrolytes
  • 9.2. Features and advantages
  • 9.3. Technical specifications
  • 9.4. Types
  • 9.5. Technology Readiness and Manufacturing Status
    • 9.5.1. Manufacturing Process Comparison
    • 9.5.2. Critical Manufacturing Challenges and Solutions
  • 9.6. Automotive OEM Strategies and Deployment Timelines
  • 9.7. Microbatteries
    • 9.7.1. Introduction
    • 9.7.2. Materials
    • 9.7.3. Applications
    • 9.7.4. 3D designs
      • 9.7.4.1. 3D printed batteries
  • 9.8. Bulk type solid-state batteries
  • 9.9. SWOT analysis
  • 9.10. Limitations
  • 9.11. Global revenues
  • 9.12. Product developers

10. STRUCTURAL BATTERY COMPOSITES

  • 10.1. Introduction
  • 10.2. Materials and Architecture
  • 10.3. Applications
    • 10.3.1. Electric Vehicle Applications
    • 10.3.2. Aerospace and Aviation
    • 10.3.3. Consumer Electronics and Portable Devices
    • 10.3.4. Construction and Infrastructure
  • 10.4. Technical Challenges
    • 10.4.1. Energy Density Limitations
    • 10.4.2. Long-term Mechanical and Electrochemical Stability
  • 10.5. Supply chain
  • 10.6. Market Forecasts
  • 10.7. Safety Considerations
    • 10.7.1. Safety Challenges
  • 10.8. Environmental profile of structural battery composites

11. FLEXIBLE BATTERIES

  • 11.1. Technology description
  • 11.2. Technical specifications
    • 11.2.1. Approaches to flexibility
  • 11.3. Flexible electronics
  • 11.4. Flexible materials
  • 11.5. Flexible and wearable Metal-sulfur batteries
  • 11.6. Flexible and wearable Metal-air batteries
  • 11.7. Flexible Lithium-ion Batteries
    • 11.7.1. Types of Flexible/stretchable LIBs
      • 11.7.1.1. Flexible planar LiBs
      • 11.7.1.2. Flexible Fiber LiBs
      • 11.7.1.3. Flexible micro-LiBs
      • 11.7.1.4. Stretchable lithium-ion batteries
      • 11.7.1.5. Origami and kirigami lithium-ion batteries
  • 11.8. Flexible Li/S batteries
    • 11.8.1. Components
    • 11.8.2. Carbon nanomaterials
  • 11.9. Flexible lithium-manganese dioxide (Li-MnO2) batteries
  • 11.10. Flexible zinc-based batteries
    • 11.10.1. Components
      • 11.10.1.1. Anodes
      • 11.10.1.2. Cathodes
    • 11.10.2. Challenges
    • 11.10.3. Flexible zinc-manganese dioxide (Zn-Mn) batteries
    • 11.10.4. Flexible silver-zinc (Ag-Zn) batteries
    • 11.10.5. Flexible Zn-Air batteries
    • 11.10.6. Flexible zinc-vanadium batteries
  • 11.11. Fiber-shaped batteries
    • 11.11.1. Carbon nanotubes
    • 11.11.2. Types
    • 11.11.3. Applications
    • 11.11.4. Challenges
  • 11.12. Energy harvesting combined with wearable energy storage devices
  • 11.13. SWOT analysis
  • 11.14. Global revenues
  • 11.15. Product developers

12. TRANSPARENT BATTERIES

  • 12.1. Technology description
  • 12.2. Components
  • 12.3. SWOT analysis
  • 12.4. Market outlook

13. DEGRADABLE BATTERIES

  • 13.1. Technology description
  • 13.2. Components
  • 13.3. SWOT analysis
  • 13.4. Market outlook
  • 13.5. Product developers

14. PRINTED BATTERIES

  • 14.1. Technical specifications
  • 14.2. Components
  • 14.3. Design
  • 14.4. Key features
  • 14.5. Printable current collectors
  • 14.6. Printable electrodes
  • 14.7. Materials
  • 14.8. Applications
  • 14.9. Printing techniques
  • 14.10. Lithium-ion (LIB) printed batteries
  • 14.11. Zinc-based printed batteries
  • 14.12. 3D Printed batteries
    • 14.12.1. 3D Printing techniques for battery manufacturing
    • 14.12.2. Materials for 3D printed batteries
      • 14.12.2.1. Electrode materials
      • 14.12.2.2. Electrolyte Materials
  • 14.13. SWOT analysis
  • 14.14. Global revenues
  • 14.15. Product developers

15. REDOX FLOW BATTERIES

  • 15.1. Technology description
  • 15.2. Market Overview
  • 15.3. Technology Benchmarking - Chemistry Comparison
  • 15.4. Chemistry Selection Matrix by Application
  • 15.5. Component Technologies and Cost Reduction Pathways
  • 15.6. Component Innovation
  • 15.7. Types
    • 15.7.1. Vanadium redox flow batteries (VRFB)
      • 15.7.1.1. Technology description
      • 15.7.1.2. SWOT analysis
      • 15.7.1.3. Market players
    • 15.7.2. Zinc-bromine flow batteries (ZnBr)
      • 15.7.2.1. Technology description
      • 15.7.2.2. SWOT analysis
      • 15.7.2.3. Market players
    • 15.7.3. Polysulfide bromine flow batteries (PSB)
      • 15.7.3.1. Technology description
      • 15.7.3.2. SWOT analysis
    • 15.7.4. Iron-chromium flow batteries (ICB)
      • 15.7.4.1. Technology description
      • 15.7.4.2. SWOT analysis
      • 15.7.4.3. Market players
    • 15.7.5. All-Iron flow batteries
      • 15.7.5.1. Technology description
      • 15.7.5.2. SWOT analysis
      • 15.7.5.3. Market players
    • 15.7.6. Zinc-iron (Zn-Fe) flow batteries
      • 15.7.6.1. Technology description
      • 15.7.6.2. SWOT analysis
      • 15.7.6.3. Market players
    • 15.7.7. Hydrogen-bromine (H-Br) flow batteries
      • 15.7.7.1. Technology description
      • 15.7.7.2. SWOT analysis
      • 15.7.7.3. Market players
    • 15.7.8. Hydrogen-Manganese (H-Mn) flow batteries
      • 15.7.8.1. Technology description
      • 15.7.8.2. SWOT analysis
      • 15.7.8.3. Market players
    • 15.7.9. Organic flow batteries
      • 15.7.9.1. Technology description
      • 15.7.9.2. SWOT analysis
      • 15.7.9.3. Market players
    • 15.7.10. Emerging Flow-Batteries
      • 15.7.10.1. Semi-Solid Redox Flow Batteries
      • 15.7.10.2. Solar Redox Flow Batteries
      • 15.7.10.3. Air-Breathing Sulfur Flow Batteries
      • 15.7.10.4. Metal-CO2 Batteries
    • 15.7.11. Hybrid Flow Batteries
      • 15.7.11.1. Zinc-Cerium Hybrid Flow Batteries
        • 15.7.11.1.1. Technology description
      • 15.7.11.2. Zinc-Polyiodide Flow Batteries
        • 15.7.11.2.1. Technology description
      • 15.7.11.3. Zinc-Nickel Hybrid Flow Batteries
        • 15.7.11.3.1. Technology description
      • 15.7.11.4. Zinc-Bromine Hybrid Flow Batteries
        • 15.7.11.4.1. Technology description
      • 15.7.11.5. Vanadium-Polyhalide Flow Batteries
        • 15.7.11.5.1. Technology description
  • 15.8. Markets for redox flow batteries
  • 15.9. Global revenues
    • 15.9.1. Regional Market Analysis and Capacity Distribution

16. ZN-BASED BATTERIES

  • 16.1. Technology description
    • 16.1.1. Zinc-Air batteries
    • 16.1.2. Zinc-ion batteries
    • 16.1.3. Zinc-bromide
  • 16.2. Market outlook
  • 16.3. Product developers

17. AI BATTERY TECHNOLOGY

  • 17.1. Overview
  • 17.2. Applications
    • 17.2.1. Machine Learning
      • 17.2.1.1. Overview
    • 17.2.2. Material Informatics
      • 17.2.2.1. Overview
      • 17.2.2.2. Companies
    • 17.2.3. Cell Testing
      • 17.2.3.1. Overview
      • 17.2.3.2. Companies
    • 17.2.4. Cell Assembly and Manufacturing
      • 17.2.4.1. Overview
      • 17.2.4.2. Companies
    • 17.2.5. Battery Analytics
      • 17.2.5.1. Overview
      • 17.2.5.2. Companies
    • 17.2.6. Second Life Assessment
      • 17.2.6.1. Overview
      • 17.2.6.2. Companies

18. PRINTED SUPERCAPACITORS

  • 18.1. Overview
  • 18.2. Printing methods
  • 18.3. Electrode materials
  • 18.4. Electrolytes

19. CELL AND BATTERY DESIGN

  • 19.1. Cell Design
    • 19.1.1. Overview
      • 19.1.1.1. Larger cell formats
      • 19.1.1.2. Bipolar battery architecture
      • 19.1.1.3. Thick Format Electrodes
      • 19.1.1.4. Dual Electrolyte Li-ion
    • 19.1.2. Commercial examples
      • 19.1.2.1. Tesla 4680 Tabless Cell
      • 19.1.2.2. EnPower multi-layer electrode technology
      • 19.1.2.3. Prieto Battery
      • 19.1.2.4. Addionics
    • 19.1.3. Electrolyte Additives
    • 19.1.4. Enhancing battery performance
  • 19.2. Cell Performance
    • 19.2.1. Energy density
      • 19.2.1.1. BEV cell energy
      • 19.2.1.2. Cell energy density
  • 19.3. Battery Packs
    • 19.3.1. Cell-to-pack
    • 19.3.2. Cell-to-chassis/body
    • 19.3.3. Bipolar batteries
    • 19.3.4. Hybrid battery packs
      • 19.3.4.1. CATL
      • 19.3.4.2. Our Next Energy
      • 19.3.4.3. Nio
    • 19.3.5. Battery Management System (BMS)
      • 19.3.5.1. Overview
      • 19.3.5.2. Advantages
      • 19.3.5.3. Innovation
      • 19.3.5.4. Fast charging capabilities
      • 19.3.5.5. Wireless Battery Management System technology

20. COMPANY PROFILES (406 company profiles)

21. RESEARCH METHODOLOGY

  • 21.1. Report scope
  • 21.2. Research methodology

22. REFERENCES

List of Tables

  • Table 1. Trends in the Li-ion market in 2025
  • Table 2. Total Addressable Market for Li-ion Batteries
  • Table 3. Li-ion battery pack demand for XEV (GWh) 2019-2036
  • Table 4. Regional XEV Battery Demand 2036
  • Table 5. Li-ion battery market value for XEV (in $B) 2019-2036
  • Table 6. Market Value by Chemistry 2036
  • Table 7. Regional Market Value Distribution 2036
  • Table 8. Semi-solid-state battery market forecast (GWh) 2019-2036
  • Table 9. Semi-solid-state battery Application Analysis 2036
  • Table 10. Semi-solid-state battery Cost Evolution
  • Table 11. Semi-solid-state battery market forecast, GWh, by electrolyte types 2019-2036
  • Table 12. Semi-solid-state battery market value ($B) 2019-2036
  • Table 13. Application Value Breakdown 2036
  • Table 14. Solid-state battery market forecast (GWh) 2019-2036
  • Table 15. Solid-state battery market forecast, GWh, by electrolyte types 2019-2036
  • Table 16. Sodium-ion battery market forecast (GWh) 2019-2036
  • Table 17. Sodium-ion Technology Distribution 2036
  • Table 18. Sodium-ion battery market value ($B) 2019-2036
  • Table 19. Sodium-ion Regional Market Value 2036
  • Table 20. Li-ion battery demand versus beyond Li-ion batteries demand 2019-2036
  • Table 21. Technology Composition of Beyond Li-ion 2036
  • Table 22. Market Value Comparison: Li-ion vs Beyond Li-ion 2036
  • Table 23. BEV car cathode forecast (GWh) 2019-2036
  • Table 24. BEV anode forecast (GWh) 2019-2036
  • Table 25. BEV anode forecast ($B) 2019-2036
  • Table 26. EV cathode forecast (GWh) 2019-2036
  • Table 27. EV Anode forecast (GWh) 2019-2036
  • Table 28. Advanced anode forecast (GWh) 2019-2036
  • Table 29. Advanced anode forecast (S$B) 2019-2036
  • Table 30. Annual sales of Battery Electric Vehicles (BEV) and Plug-In Hybrid Electric Vehicles (PHEV) 2018-2036
  • Table 31. Battery chemistries used in electric buses
  • Table 32. Micro EV types
  • Table 33. Battery Sizes for Different Vehicle Types
  • Table 34. Competing technologies for batteries in electric boats
  • Table 35. Electric car Li-ion demand forecast (GWh), 2018-2036
  • Table 36. Regional Breakdown 2036
  • Table 37. Battery Chemistry Distribution 2036
  • Table 38. EV Li-ion battery market (US$B), 2018-2036
  • Table 39. Electric bus, truck and van battery forecast (GWh), 2018-2036
  • Table 40. Regional Distribution 2036
  • Table 41. Battery Chemistry Distribution 2036
  • Table 42. Micro EV Li-ion demand forecast (GWh)
  • Table 43. Regional Micro-EVs Battery Value 2036
  • Table 44. Competing technologies for batteries in grid storage
  • Table 45. Lithium-ion battery grid storage demand forecast (GWh), 2018-2036
  • Table 46. Utility-Scale Grid Storage Project Size Distribution 2036:
  • Table 47. Utility-Scale Grid Storage Geographic Distribution 2036
  • Table 48. Battery Chemistry Mix Utility-Scale 2036
  • Table 49. Commercial & Industrial (C&I) Grid Storage Customer Segments 2036
  • Table 50. Commercial & Industrial (C&I) Grid Storage Geographic Distribution 2036
  • Table 51. Battery Chemistry Mix C&I 2036
  • Table 52. Residential Grid Storage Geographic Distribution 2036
  • Table 53. Battery Chemistry Mix Residential 2036
  • Table 54. Competing technologies for batteries in consumer electronics
  • Table 55. Competing technologies for sodium-ion batteries in grid storage
  • Table 56. Market drivers for use of advanced materials and technologies in batteries
  • Table 57. Battery market megatrends
  • Table 58. Advanced materials for batteries
  • Table 59. Motivation for Battery Development Beyond Lithium
  • Table 60. Battery Chemistries
  • Table 61. Commercial Li-ion battery cell composition
  • Table 62. Lithium-ion (Li-ion) battery supply chain
  • Table 63. Types of lithium battery
  • Table 64. Comparison of Li-ion battery anode materials
  • Table 65. Trends in the Li-ion battery market
  • Table 66. Si-anode performance summary
  • Table 67. Manufacturing methods for nano-silicon anodes
  • Table 68. Market Players' Production Capacites
  • Table 69. Strategic Partnerships and Agreements
  • Table 70. Markets and applications for silicon anodes
  • Table 71. Anode material consumption by type (tonnes)
  • Table 72. Anode material consumption by end use market (tonnes)
  • Table 73. Anode materials prices, current and forecasted (USD/kg)
  • Table 74. Silicon-anode companies
  • Table 75. Li-ion battery cathode materials
  • Table 76. Key technology trends shaping lithium-ion battery cathode development
  • Table 77. Benefits of High and Ultra-High Nickel NMC
  • Table 78. Routes to High Nickel Cathode Stabilisation
  • Table 79. High-nickel Products Table
  • Table 80. Li-Mn-rich / lithium-manganese-rich / LMR-NMC costs
  • Table 81. Commercial lithium-manganese-rich cathode development
  • Table 82. Lithium-manganese-rich cathode developers
  • Table 83. Properties of Lithium Cobalt Oxide) as a cathode material for lithium-ion batteries
  • Table 84. Properties of lithium iron phosphate (LiFePO4 or LFP) as a cathode material for lithium-ion batteries
  • Table 85. Properties of Lithium Manganese Oxide cathode material
  • Table 86. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC)
  • Table 87. Properties of Lithium Nickel Cobalt Aluminum Oxide
  • Table 88. LMFP Cell Performance
  • Table 89. LMFP Energy Density Analysis
  • Table 90. LMFP Cost Analysis
  • Table 91. LMFP Cathode Developers
  • Table 92. LNMO Performance
  • Table 93. LNMO Energy Density Comparison
  • Table 94. Alternative Cathode Production Routes
  • Table 95. Alternative cathode synthesis routes
  • Table 96. Alternative Cathode Production Companies
  • Table 97. Recycled cathode materials facilities and capactites
  • Table 98. Comparison table of key lithium-ion cathode materials
  • Table 99. Li-ion battery Binder and conductive additive materials
  • Table 100. Li-ion battery Separator materials
  • Table 101. Lithium-Ion Cell Energy Density Evolution 2000-2036
  • Table 102. Anode Technology Comparison for High-Energy Cells
  • Table 103. Energy Density Technology Roadmap 2025-2036
  • Table 104. Market Penetration Forecast - High Energy Density Cells (>350 Wh/kg)
  • Table 105. PFAS Regulations Impacting Battery Manufacturing 2025-2036
  • Table 106. PFAS Compounds in Lithium-Ion Battery Production
  • Table 107. Non-PFAS Cathode Binder Performance Comparison
  • Table 108. PFAS Electrolyte Additives and Functions
  • Table 109. Economic Impact of PFAS Elimination by Cell Component ($/kWh)
  • Table 110. Revenue Impact
  • Table 111. Li-ion battery market players
  • Table 112. Typical lithium-ion battery recycling process flow
  • Table 113. Main feedstock streams that can be recycled for lithium-ion batteries
  • Table 114. Comparison of LIB recycling methods
  • Table 115. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries
  • Table 116. Global revenues for Li-ion batteries, 2018-2036, by market (Billions USD)
  • Table 117. Anode-less lithium-metal cell benefits
  • Table 118. Anode-less lithium-metal cell developers
  • Table 119. Hybrid Battery Technologies
  • Table 120. Applications for Li-metal batteries
  • Table 121. Li-metal battery developers
  • Table 122. Li-S performance characteristics
  • Table 123. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types
  • Table 124. Challenges with lithium-sulfur
  • Table 125. Li-S advantages and use cases
  • Table 126. Global revenues for Lithium-sulfur, 2018-2036, by market (Billions USD)
  • Table 127. Lithium-sulphur battery product developers
  • Table 128. Global revenues for Lithium titanate and niobate batteries, 2018-2036, by market (Billions USD)
  • Table 129. Product developers in Lithium titanate and niobate batteries
  • Table 130. Comparison of cathode materials
  • Table 131. Layered transition metal oxide cathode materials for sodium-ion batteries
  • Table 132. General cycling performance characteristics of common layered transition metal oxide cathode materials
  • Table 133. Polyanionic materials for sodium-ion battery cathodes
  • Table 134. Comparative analysis of different polyanionic materials
  • Table 135. Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries
  • Table 136. Comparison of Na-ion battery anode materials
  • Table 137. Hard Carbon producers for sodium-ion battery anodes
  • Table 138. Comparison of carbon materials in sodium-ion battery anodes
  • Table 139. Comparison between Natural and Synthetic Graphite
  • Table 140. Properties of graphene, properties of competing materials, applications thereof
  • Table 141. Comparison of carbon based anodes
  • Table 142. Alloying materials used in sodium-ion batteries
  • Table 143. Na-ion electrolyte formulations
  • Table 144. Pros and cons compared to other battery types
  • Table 145. Cost comparison with Li-ion batteries
  • Table 146. Key materials in sodium-ion battery cells
  • Table 147. Global revenues for sodium-ion batteries, 2018-2036, by market (Billions USD)
  • Table 148. Global revenues for aluminium-ion batteries, 2018-2036, by market (Billions USD)
  • Table 149. Product developers in aluminium-ion batteries
  • Table 150. Types of solid-state electrolytes
  • Table 151. Market segmentation and status for solid-state batteries
  • Table 152. Solid Electrolyte Material Comparison
  • Table 153. Typical process chains for manufacturing key components and assembly of solid-state batteries
  • Table 154. Comparison between liquid and solid-state batteries
  • Table 155. Solid-State Battery Technology Readiness Level (TRL) by Company 2025
  • Table 156. Automotive OEM Solid-State Battery Programs 2025-2036
  • Table 157. Limitations of solid-state thin film batteries
  • Table 158. Solid-State Battery Market Forecast by Electrolyte Type 2025-2036
  • Table 159. Solid-state thin-film battery market players
  • Table 160. Key Material Properties for Structural Battery Composites
  • Table 161. Electric Vehicle Impact Analysis - Structural Battery Composites
  • Table 162. Structural Battery Composites Market Forecast 2025-2036
  • Table 163. Life Cycle Environmental Impact Comparison (per kg of material)
  • Table 164. Flexible battery applications and technical requirements
  • Table 165. Comparison of Flexible and Traditional Lithium-Ion Batteries
  • Table 166. Material Choices for Flexible Battery Components
  • Table 167. Flexible Li-ion battery prototypes
  • Table 168. Thin film vs bulk solid-state batteries
  • Table 169. Summary of fiber-shaped lithium-ion batteries
  • Table 170. Types of fiber-shaped batteries
  • Table 171. Global revenues for flexible batteries, 2018-2036, by market (Billions USD)
  • Table 172. Product developers in flexible batteries
  • Table 173. Components of transparent batteries
  • Table 174. Components of degradable batteries
  • Table 175. Product developers in degradable batteries
  • Table 176. Main components and properties of different printed battery types
  • Table 177. Applications of printed batteries and their physical and electrochemical requirements
  • Table 178. 2D and 3D printing techniques
  • Table 179. Printing techniques applied to printed batteries
  • Table 180. Main components and corresponding electrochemical values of lithium-ion printed batteries
  • Table 181. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn-MnO2 and other battery types
  • Table 182. Main 3D Printing techniques for battery manufacturing
  • Table 183. Electrode Materials for 3D Printed Batteries
  • Table 184. Global revenues for printed batteries, 2018-2036, by market (Billions USD)
  • Table 185. Product developers in printed batteries
  • Table 186. Advantages and disadvantages of redox flow batteries
  • Table 187. Global Redox Flow Battery Market Forecast 2025-2036
  • Table 188. Comprehensive RFB Chemistry Benchmarking
  • Table 189. RFB Component Cost Evolution 2025-2036
  • Table 190. Comparison of different battery types
  • Table 191. Summary of main flow battery types
  • Table 192. Vanadium redox flow batteries (VRFB)-key features, advantages, limitations, performance, components and applications
  • Table 193. Market players in Vanadium redox flow batteries (VRFB)
  • Table 194. Zinc-bromine (ZnBr) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 195. Market players in Zinc-Bromine Flow Batteries (ZnBr)
  • Table 196. Polysulfide bromine flow batteries (PSB)-key features, advantages, limitations, performance, components and applications
  • Table 197. Iron-chromium (ICB) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 198. Market players in Iron-chromium (ICB) flow batteries
  • Table 199. All-Iron flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 200. Market players in All-iron Flow Batteries
  • Table 201. Zinc-iron (Zn-Fe) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 202. Market players in Zinc-iron (Zn-Fe) Flow Batteries
  • Table 203. Hydrogen-bromine (H-Br) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 204. Market players in Hydrogen-bromine (H-Br) flow batteries
  • Table 205. Hydrogen-Manganese (H-Mn) flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 206. Market players in Hydrogen-Manganese (H-Mn) Flow Batteries
  • Table 207. Materials in Organic Redox Flow Batteries (ORFB)
  • Table 208. Key Active species for ORFBs
  • Table 209. Organic flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 210. Market players in Organic Redox Flow Batteries (ORFB)
  • Table 211. Zinc-Cerium Hybrid flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 212. Zinc-Polyiodide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 213. Zinc-Nickel Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 214. Zinc-Bromine Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 215. Vanadium-Polyhalide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications
  • Table 216. Redox flow battery value chain
  • Table 217. Global revenues for redox flow batteries, 2018-2036, by type (millions USD)
  • Table 218. RFB Regional Market Forecast 2025-2036
  • Table 219. ZN-based battery product developers
  • Table 220. Application of Artificial Intelligence (AI) in battery technology
  • Table 221. Machine learning approaches
  • Table 222. Types of Neural Networks
  • Table 223. Companies in materials informatics for batteries
  • Table 224. Data Forms for Cell Modelling
  • Table 225. Algorithmic Approaches for Different Testing Modes
  • Table 226. Companies in AI for cell testing for batteries
  • Table 227.Algorithmic Approaches in Manufacturing and Cell Assembly:
  • Table 228. AI-based battery manufacturing players
  • Table 229. Companies in AI for battery diagnostics and management
  • Table 230. Algorithmic Approaches and Data Inputs/Outputs
  • Table 231. Companies in AI for second-life battery assessment
  • Table 232. Methods for printing supercapacitors
  • Table 233. Electrode Materials for printed supercapacitors
  • Table 234. Electrolytes for printed supercapacitors
  • Table 235. Main properties and components of printed supercapacitors
  • Table 236. Electrolyte Additives
  • Table 237. Cell performance specification
  • Table 238. Commercial cell chemistries
  • Table 239. Drivers and Challenges for Cell-to-pack
  • Table 240. Cell-to-pack and cell-to-body designs
  • Table 241. 3DOM separator
  • Table 242. CATL sodium-ion battery characteristics
  • Table 243. CHAM sodium-ion battery characteristics
  • Table 244. Chasm SWCNT products
  • Table 245. Faradion sodium-ion battery characteristics
  • Table 246. HiNa Battery sodium-ion battery characteristics
  • Table 247. Battery performance test specifications of J. Flex batteries
  • Table 248. LiNa Energy battery characteristics
  • Table 249. Natrium Energy battery characteristics

List of Figures

  • Figure 1. Li-ion battery pack demand for XEV (in GWh) 2019-2036
  • Figure 2. Li-ion battery market value for XEV (in $B) 2019-2036
  • Figure 3. Semi-solid-state battery market forecast, GWh, by electrolyte types 2019-2036
  • Figure 4. Semi-solid-state battery market value ($B) 2019-2036
  • Figure 5. Solid-state battery market forecast (GWh) 2019-2036
  • Figure 6. Solid-state battery market forecast, GWh, by electrolyte types 2019-2036
  • Figure 7. Sodium-ion battery market forecast (GWh) 2019-2036
  • Figure 8. Sodium-ion battery market value ($B) 2019-2036
  • Figure 9. BEV car cathode forecast (GWh) 2019-2036
  • Figure 10. BEV anode forecast (GWh) 2019-2036
  • Figure 11. BEV anode forecast ($B) 2019-2036
  • Figure 12. EV cathode forecast (GWh) 2019-2036
  • Figure 13. EV Anode forecast (GWh) 2019-2036
  • Figure 14. Advanced anode forecast (GWh) 2019-2036
  • Figure 15. Advanced anode forecast (S$B) 2019-2036
  • Figure 16. Salt-E Dog mobile battery
  • Figure 17. I.Power Nest - Residential Energy Storage System Solution
  • Figure 18. Lithium Cell Design
  • Figure 19. Functioning of a lithium-ion battery
  • Figure 20. Li-ion battery cell pack
  • Figure 21. Li-ion electric vehicle (EV) battery
  • Figure 22. SWOT analysis: Li-ion batteries
  • Figure 23. Li-ion technology roadmap
  • Figure 24. Silicon anode value chain
  • Figure 25. Market development timeline
  • Figure 26. Silicon Anode Commercialization Timeline
  • Figure 27. Silicon anode value chain
  • Figure 28. Anode material consumption by type (tonnes)
  • Figure 29. Anode material consumption by end user market (tonnes)
  • Figure 30. Ultra-high Nickel Cathode Commercialization Timeline
  • Figure 31. Lithium-manganese-rich cathode SWOT analysis
  • Figure 32. Li-cobalt structure
  • Figure 33. Li-manganese structure
  • Figure 34. LNMO cathode SWOT
  • Figure 35. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials
  • Figure 36. Flow chart of recycling processes of lithium-ion batteries (LIBs)
  • Figure 37. Hydrometallurgical recycling flow sheet
  • Figure 38. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling
  • Figure 39. Umicore recycling flow diagram
  • Figure 40. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling
  • Figure 41. Schematic of direct recycling process
  • Figure 42. SWOT analysis for Direct Li-ion Battery Recycling
  • Figure 43. Global revenues for Li-ion batteries, 2018-2036, by market (Billions USD)
  • Figure 44. Schematic diagram of a Li-metal battery
  • Figure 45. SWOT analysis: Lithium-metal batteries
  • Figure 46. Schematic diagram of Lithium-sulfur battery
  • Figure 47. Lithium-sulfur market value chain
  • Figure 48. SWOT analysis: Lithium-sulfur batteries
  • Figure 49. Global revenues for Lithium-sulfur, 2018-2036, by market (Billions USD)
  • Figure 50. Global revenues for Lithium titanate and niobate batteries, 2018-2036, by market (Billions USD)
  • Figure 51. Schematic of Prussian blue analogues (PBA)
  • Figure 52. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG)
  • Figure 53. Overview of graphite production, processing and applications
  • Figure 54. Schematic diagram of a multi-walled carbon nanotube (MWCNT)
  • Figure 55. Schematic diagram of a Na-ion battery
  • Figure 56. SWOT analysis: Sodium-ion batteries
  • Figure 57. Global revenues for sodium-ion batteries, 2018-2036, by market (Billions USD)
  • Figure 58. Schematic of a Na-S battery
  • Figure 59. SWOT analysis: Sodium-sulfur batteries
  • Figure 60. Saturnose battery chemistry
  • Figure 61. SWOT analysis: Aluminium-ion batteries
  • Figure 62. Global revenues for aluminium-ion batteries, 2018-2036, by market (Billions USD)
  • Figure 63. Schematic illustration of all-solid-state lithium battery
  • Figure 64. ULTRALIFE thin film battery
  • Figure 65. Examples of applications of thin film batteries
  • Figure 66. Capacities and voltage windows of various cathode and anode materials
  • Figure 67. Traditional lithium-ion battery (left), solid state battery (right)
  • Figure 68. Bulk type compared to thin film type SSB
  • Figure 69. SWOT analysis: All-solid state batteries
  • Figure 70. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries
  • Figure 71. Various architectures for flexible and stretchable electrochemical energy storage
  • Figure 72. Types of flexible batteries
  • Figure 73. Flexible batteries on the market
  • Figure 74. Materials and design structures in flexible lithium ion batteries
  • Figure 75. Flexible/stretchable LIBs with different structures
  • Figure 76. a-c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs
  • Figure 77. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d-f)
  • Figure 78. Origami disposable battery
  • Figure 79. Zn-MnO2 batteries produced by Brightvolt
  • Figure 80. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries
  • Figure 81. Zn-MnO2 batteries produced by Blue Spark
  • Figure 82. Ag-Zn batteries produced by Imprint Energy
  • Figure 83. Wearable self-powered devices
  • Figure 84. SWOT analysis: Flexible batteries
  • Figure 85. Global revenues for flexible batteries, 2018-2036, by market (Billions USD)
  • Figure 86. Transparent batteries
  • Figure 87. SWOT analysis: Transparent batteries
  • Figure 88. Degradable batteries
  • Figure 89. SWOT analysis: Degradable batteries
  • Figure 90. Various applications of printed paper batteries
  • Figure 91.Schematic representation of the main components of a battery
  • Figure 92. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together
  • Figure 93. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III)
  • Figure 94. SWOT analysis: Printed batteries
  • Figure 95. Global revenues for printed batteries, 2018-2036, by market (Billions USD)
  • Figure 96. Scheme of a redox flow battery
  • Figure 97. Vanadium Redox Flow Battery schematic
  • Figure 98. SWOT analysis: Vanadium redox flow batteries (VRFB)
  • Figure 99. Schematic of zinc bromine flow battery energy storage system
  • Figure 100. SWOT analysis: Zinc-Bromine Flow Batteries (ZnBr)
  • Figure 101. SWOT analysis: Iron-chromium (ICB) flow batteries
  • Figure 102. SWOT analysis: Iron-chromium (ICB) flow batteries
  • Figure 103. Schematic of All-Iron Redox Flow Batteries
  • Figure 104. SWOT analysis: All-iron Flow Batteries
  • Figure 105. SWOT analysis: Zinc-iron (Zn-Fe) flow batteries
  • Figure 106. Schematic of Hydrogen-bromine flow battery
  • Figure 107. SWOT analysis: Hydrogen-bromine (H-Br) flow batteries
  • Figure 108. SWOT analysis: Hydrogen-Manganese (H-Mn) flow batteries
  • Figure 109. SWOT analysis: Organic redox flow batteries (ORFBs) batteries
  • Figure 110. Schematic of zinc-polyiodide redox flow battery (ZIB)
  • Figure 111. Redox flow batteries applications roadmap
  • Figure 112. Global revenues for redox flow batteries, 2018-2036, by type (millions USD)
  • Figure 113. Main printing methods for supercapacitors
  • Figure 114. Types of integrated battery packs
  • Figure 115. Battery pack with a cell-to-pack design and prismatic cells
  • Figure 116. 24M battery
  • Figure 117. 3DOM battery
  • Figure 118. AC biode prototype
  • Figure 119. Schematic diagram of liquid metal battery operation
  • Figure 120. Ampcera's all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm)
  • Figure 121. Amprius battery products
  • Figure 122. All-polymer battery schematic
  • Figure 123. All Polymer Battery Module
  • Figure 124. Resin current collector
  • Figure 125. Ateios thin-film, printed battery
  • Figure 126. The structure of aluminum-sulfur battery from Avanti Battery
  • Figure 127. Containerized NAS-R batteries
  • Figure 128. 3D printed lithium-ion battery
  • Figure 129. Blue Solution module
  • Figure 130. TempTraq wearable patch
  • Figure 131. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process
  • Figure 132. Carhartt X-1 Smart Heated Vest
  • Figure 133. Cymbet EnerChip(TM)
  • Figure 134. E-magy nano sponge structure
  • Figure 135. Enerpoly zinc-ion battery
  • Figure 136. SoftBattery-R
  • Figure 137. ASSB All-Solid-State Battery by EGI 300 Wh/kg
  • Figure 138. Roll-to-roll equipment working with ultrathin steel substrate
  • Figure 139. 40 Ah battery cell
  • Figure 140. FDK Corp battery
  • Figure 141. 2D paper batteries
  • Figure 142. 3D Custom Format paper batteries
  • Figure 143. Fuji carbon nanotube products
  • Figure 144. Gelion Endure battery
  • Figure 145. Gelion GEN3 lithium sulfur batteries
  • Figure 146. Grepow flexible battery
  • Figure 147. HPB solid-state battery
  • Figure 148. HiNa Battery pack for EV
  • Figure 149. JAC demo EV powered by a HiNa Na-ion battery
  • Figure 150. Nanofiber Nonwoven Fabrics from Hirose
  • Figure 151. Hitachi Zosen solid-state battery
  • Figure 152. Ilika solid-state batteries
  • Figure 153. TAeTTOOz printable battery materials
  • Figure 154. Ionic Materials battery cell
  • Figure 155. Schematic of Ion Storage Systems solid-state battery structure
  • Figure 156. ITEN micro batteries
  • Figure 157. Kite Rise's A-sample sodium-ion battery module
  • Figure 158. LiBEST flexible battery
  • Figure 159. Li-FUN sodium-ion battery cells
  • Figure 160. LiNa Energy battery
  • Figure 161. 3D solid-state thin-film battery technology
  • Figure 162. Lyten batteries
  • Figure 163. Cellulomix production process
  • Figure 164. Nanobase versus conventional products
  • Figure 165. Nanotech Energy battery
  • Figure 166. Hybrid battery powered electrical motorbike concept
  • Figure 167. NBD battery
  • Figure 168. Schematic illustration of three-chamber system for SWCNH production
  • Figure 169. TEM images of carbon nanobrush
  • Figure 170. EnerCerachip
  • Figure 171. Cambrian battery
  • Figure 172. Printed battery
  • Figure 173. Prieto Foam-Based 3D Battery
  • Figure 174. Printed Energy flexible battery
  • Figure 175. ProLogium solid-state battery
  • Figure 176. QingTao solid-state batteries
  • Figure 177. Schematic of the quinone flow battery
  • Figure 178. Sakuu Corporation 3Ah Lithium Metal Solid-state Battery
  • Figure 179. Salgenx S3000 seawater flow battery
  • Figure 180. Samsung SDI's sixth-generation prismatic batteries
  • Figure 181. SES Apollo batteries
  • Figure 182. Sionic Energy battery cell
  • Figure 183. Solid Power battery pouch cell
  • Figure 184. Stora Enso lignin battery materials
  • Figure 185.TeraWatt Technology solid-state battery
  • Figure 186. Zeta Energy 20 Ah cell
  • Figure 187. Zoolnasm batteries
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!