PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1776693
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1776693
According to Stratistics MRC, the Global Insect Protein Market is accounted for $682.96 million in 2025 and is expected to reach $2294.42 million by 2032 growing at a CAGR of 18.9% during the forecast period. A nutrient-dense and sustainable substitute for conventional animal and plant-based proteins is insect protein. Insects such as mealworms, crickets, and black soldier fly larvae yield this rich source of vital amino acids, vitamins, and minerals. When compared to livestock, insect farming uses a lot less land, water, and feed, which makes it a sustainable way to meet the world's protein needs. Pet food, animal feed, and even human food items like protein bars and powders are using it more and more. Moreover, insect protein is becoming more well-known as a potential way to enhance future food security as consumer awareness of sustainability rises.
According to the Food and Agriculture Organization of the United Nations (FAO), insect farming offers a highly efficient and sustainable protein source, dible insect species can convert on average 2 kg of feed into 1 kg of insect mass, compared to 8 kg needed for cattle to gain the same weight.
Growing interest in sustainable sources of protein
The hunt for substitute protein sources has accelerated due to the growing global population and growing environmental sustainability concerns. The low environmental impact of insect protein makes it an extremely effective solution. In addition to using a lot less water, land, and feed than conventional livestock, insects also produce fewer greenhouse gases. Crickets emit 80 times less methane and require 12 times less feed than cattle, for instance. Additionally, insects have been approved by the Food and Agriculture Organization (FAO) as a sustainable way to help feed the world's population without depleting natural resources. This factor makes insect farming a crucial part of future food systems, especially in areas with limited resources and increasing climate pressures.
Expensive manufacturing and small scale
The majority of insect farming operations are small or medium-sized, and the sector is still in its infancy. Because they are not produced on an industrial scale, they are more expensive than traditional proteins like soy, whey, or occasionally even meat. High production costs are caused by a number of factors, including labor, climate control, breeding systems, and automated farming infrastructure. Costs are further increased by restricted access to efficient harvesting technologies and optimized feedstocks. Furthermore, insect protein will find it difficult to compete on price with conventional protein sources until economies of scale are realized and more affordable technologies are extensively used, particularly in price-sensitive markets like livestock and aquafeed.
Developments in automation and bioconversion technology
Technological developments in bioconversion, vertical rearing systems, automation, and AI-driven farming are opening up exciting possibilities for effectively scaling up insect farming. While AI and IoT technologies optimize climate control, feeding cycles, and waste management, automation lowers labor costs and increases consistency in insect farming operations. Additionally, biotechnology advancements are being applied to improve the conversion of organic waste into insect biomass, increasing its nutritional value and yield. Genetic research is starting to look into ways to selectively breed insects for traits like increased resilience, higher protein content, or faster growth. By enabling large-scale industrialization, these technologies not only reduce production costs but also make insect protein scalable and commercially viable.
Competition from other protein substitutes
Mycoproteins, plant-based proteins, lab-grown (cultured) meat, and algae are all components of the larger alternative protein ecosystem, which includes the insect protein market. In Western markets, a large number of these substitutes are already well-known, extensively used, and supported by investments and brand awareness. Companies that produce plant-based proteins, like Beyond Meat and Impossible Foods, have effectively positioned themselves as ethical and sustainable meat substitutes, gaining a sizable portion of the market from consumers who are concerned about their health and the environment. In contrast, there are still issues with insect protein's branding, awareness, and product development.
The market for insect protein was affected by the COVID-19 pandemic in a variety of ways. Insect farming operations, especially for small-scale producers, were hindered by labor shortages, logistical difficulties, and disruptions in global supply chains. The demand for foodservice fell dramatically, and regulatory procedures and product launches were postponed. The pandemic did, however, also heighten consumer interest in resilient and sustainable food systems, emphasizing the demand for low-impact alternative proteins. Long-term interest in the insect protein market was also indirectly bolstered by rising investments in alternative protein start-ups and rising knowledge of immunological and nutritional issues.
The coleoptera segment is expected to be the largest during the forecast period
The coleoptera segment is expected to account for the largest market share during the forecast period. Mealworms are prized for their high protein content, vital amino acids, vitamins, and good fats, which make them perfect for animal feed and human consumption. Because of their easy scalability in controlled environments, low environmental impact, and high feed conversion efficiency, they are a preferred species for industrial insect farming. The European Union's approval of dried yellow mealworms for human consumption is one example of a regulatory approval that has further fueled this segment's growth. Furthermore, in terms of both production volume and commercial applications, insect protein derived from Coleoptera dominates the market.
The protein bars segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the protein bars segment is predicted to witness the highest growth rate. Growing consumer demand for quick, high-protein, and sustainable snack options-especially among athletes, fitness enthusiasts, and eco-conscious consumers-is the main driver of this expansion. Insect protein bars, which are frequently made with mealworm or cricket flour, are appealing substitutes for conventional protein snacks because they have a complete amino acid profile, are low in carbohydrates, and are environmentally friendly. Additionally, the "yuck factor" that is frequently connected to eating insects is lessened by their appetizing and recognizable format, which promotes mainstream acceptance.
During the forecast period, the Europe region is expected to hold the largest market share, driven by substantial investment in sustainable food technologies, growing consumer acceptance, and robust regulatory support. By offering a clear legal framework that promotes innovation and commercialization, the European Union has taken the lead in approving insect species like mealworms and crickets for use as animal feed and for human consumption. Furthermore, the use of insect-based products in food, pet food, and aquaculture has increased due to the region's high level of environmental sustainability awareness, growing demand for alternative proteins, and growing interest in circular economy solutions.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by a number of factors, including population growth, the need for more protein, traditional entomophagy methods, and a growing emphasis on sustainable agriculture. Due to their long histories of eating insects, nations like South Korea, China, Vietnam, and Thailand have a cultural edge when it comes to consumer acceptance. Moreover, the region's interest in high-protein, functional foods is being fueled by factors such as changing dietary habits, economic growth, and rapid urbanization. This rapid growth is also being fueled by government support for environmentally friendly farming methods, the growth of insect farming startups, and the increasing use of insect protein in aquaculture and animal feed.
Key players in the market
Some of the key players in Insect Protein Market include Enterra Feed Corporation, Protix B.V., AgriProtein Holdings Ltd., Nambu Group, EnviroFlight LLC, NextProtein (nextProtein Inc.), Entomo Farms Inc, Hexafly Inc, Swarm Nutrition GmbH, Aspire Food Group, Ynsect (Ynsect), InnovaFeed SAS, Chapul Cricket Protein Inc, Bugsolutely Ltd, Jimini's Inc and Keetup & Co.
In December 2023, Protix secures collaboration with Tyson Foods. The strategic partnership advances efforts towards creating high-quality, more sustainable protein using innovative technology and solutions. Tyson Foods' global scale, experience and network will complement Protix's technology and market leadership to meet the current market demand for insect protein by scaling up production.
In March 2018, Aspire Food Group has acquired Exo, a Brooklyn-based company that produces cricket-based protein bars. Austin, Texas-based Aspire suggests the deal, for an undisclosed sum, creates a farm-to-table insect protein company. Aspire said it will integrate Exo's product line into its data-driven farming operations and supply chain to create new products and fuel the future growth of both customer bases, and the larger industry in general.
According to Stratistics MRC, the Global Insect Protein Market is accounted for $682.96 million in 2025 and is expected to reach $2294.42 million by 2032 growing at a CAGR of 18.9% during the forecast period. A nutrient-dense and sustainable substitute for conventional animal and plant-based proteins is insect protein. Insects such as mealworms, crickets, and black soldier fly larvae yield this rich source of vital amino acids, vitamins, and minerals. When compared to livestock, insect farming uses a lot less land, water, and feed, which makes it a sustainable way to meet the world's protein needs. Pet food, animal feed, and even human food items like protein bars and powders are using it more and more. Moreover, insect protein is becoming more well-known as a potential way to enhance future food security as consumer awareness of sustainability rises.
According to the Food and Agriculture Organization of the United Nations (FAO), insect farming offers a highly efficient and sustainable protein source, dible insect species can convert on average 2 kg of feed into 1 kg of insect mass, compared to 8 kg needed for cattle to gain the same weight.
Growing interest in sustainable sources of protein
The hunt for substitute protein sources has accelerated due to the growing global population and growing environmental sustainability concerns. The low environmental impact of insect protein makes it an extremely effective solution. In addition to using a lot less water, land, and feed than conventional livestock, insects also produce fewer greenhouse gases. Crickets emit 80 times less methane and require 12 times less feed than cattle, for instance. Additionally, insects have been approved by the Food and Agriculture Organization (FAO) as a sustainable way to help feed the world's population without depleting natural resources. This factor makes insect farming a crucial part of future food systems, especially in areas with limited resources and increasing climate pressures.
Expensive manufacturing and small scale
The majority of insect farming operations are small or medium-sized, and the sector is still in its infancy. Because they are not produced on an industrial scale, they are more expensive than traditional proteins like soy, whey, or occasionally even meat. High production costs are caused by a number of factors, including labor, climate control, breeding systems, and automated farming infrastructure. Costs are further increased by restricted access to efficient harvesting technologies and optimized feedstocks. Furthermore, insect protein will find it difficult to compete on price with conventional protein sources until economies of scale are realized and more affordable technologies are extensively used, particularly in price-sensitive markets like livestock and aquafeed.
Developments in automation and bioconversion technology
Technological developments in bioconversion, vertical rearing systems, automation, and AI-driven farming are opening up exciting possibilities for effectively scaling up insect farming. While AI and IoT technologies optimize climate control, feeding cycles, and waste management, automation lowers labor costs and increases consistency in insect farming operations. Additionally, biotechnology advancements are being applied to improve the conversion of organic waste into insect biomass, increasing its nutritional value and yield. Genetic research is starting to look into ways to selectively breed insects for traits like increased resilience, higher protein content, or faster growth. By enabling large-scale industrialization, these technologies not only reduce production costs but also make insect protein scalable and commercially viable.
Competition from other protein substitutes
Mycoproteins, plant-based proteins, lab-grown (cultured) meat, and algae are all components of the larger alternative protein ecosystem, which includes the insect protein market. In Western markets, a large number of these substitutes are already well-known, extensively used, and supported by investments and brand awareness. Companies that produce plant-based proteins, like Beyond Meat and Impossible Foods, have effectively positioned themselves as ethical and sustainable meat substitutes, gaining a sizable portion of the market from consumers who are concerned about their health and the environment. In contrast, there are still issues with insect protein's branding, awareness, and product development.
The market for insect protein was affected by the COVID-19 pandemic in a variety of ways. Insect farming operations, especially for small-scale producers, were hindered by labor shortages, logistical difficulties, and disruptions in global supply chains. The demand for foodservice fell dramatically, and regulatory procedures and product launches were postponed. The pandemic did, however, also heighten consumer interest in resilient and sustainable food systems, emphasizing the demand for low-impact alternative proteins. Long-term interest in the insect protein market was also indirectly bolstered by rising investments in alternative protein start-ups and rising knowledge of immunological and nutritional issues.
The coleoptera segment is expected to be the largest during the forecast period
The coleoptera segment is expected to account for the largest market share during the forecast period. Mealworms are prized for their high protein content, vital amino acids, vitamins, and good fats, which make them perfect for animal feed and human consumption. Because of their easy scalability in controlled environments, low environmental impact, and high feed conversion efficiency, they are a preferred species for industrial insect farming. The European Union's approval of dried yellow mealworms for human consumption is one example of a regulatory approval that has further fueled this segment's growth. Furthermore, in terms of both production volume and commercial applications, insect protein derived from Coleoptera dominates the market.
The protein bars segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the protein bars segment is predicted to witness the highest growth rate. Growing consumer demand for quick, high-protein, and sustainable snack options-especially among athletes, fitness enthusiasts, and eco-conscious consumers-is the main driver of this expansion. Insect protein bars, which are frequently made with mealworm or cricket flour, are appealing substitutes for conventional protein snacks because they have a complete amino acid profile, are low in carbohydrates, and are environmentally friendly. Additionally, the "yuck factor" that is frequently connected to eating insects is lessened by their appetizing and recognizable format, which promotes mainstream acceptance.
During the forecast period, the Europe region is expected to hold the largest market share, driven by substantial investment in sustainable food technologies, growing consumer acceptance, and robust regulatory support. By offering a clear legal framework that promotes innovation and commercialization, the European Union has taken the lead in approving insect species like mealworms and crickets for use as animal feed and for human consumption. Furthermore, the use of insect-based products in food, pet food, and aquaculture has increased due to the region's high level of environmental sustainability awareness, growing demand for alternative proteins, and growing interest in circular economy solutions.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by a number of factors, including population growth, the need for more protein, traditional entomophagy methods, and a growing emphasis on sustainable agriculture. Due to their long histories of eating insects, nations like South Korea, China, Vietnam, and Thailand have a cultural edge when it comes to consumer acceptance. Moreover, the region's interest in high-protein, functional foods is being fueled by factors such as changing dietary habits, economic growth, and rapid urbanization. This rapid growth is also being fueled by government support for environmentally friendly farming methods, the growth of insect farming startups, and the increasing use of insect protein in aquaculture and animal feed.
Key players in the market
Some of the key players in Insect Protein Market include Enterra Feed Corporation, Protix B.V., AgriProtein Holdings Ltd., Nambu Group, EnviroFlight LLC, NextProtein (nextProtein Inc.), Entomo Farms Inc, Hexafly Inc, Swarm Nutrition GmbH, Aspire Food Group, Ynsect (Ynsect), InnovaFeed SAS, Chapul Cricket Protein Inc, Bugsolutely Ltd, Jimini's Inc and Keetup & Co.
In December 2023, Protix secures collaboration with Tyson Foods. The strategic partnership advances efforts towards creating high-quality, more sustainable protein using innovative technology and solutions. Tyson Foods' global scale, experience and network will complement Protix's technology and market leadership to meet the current market demand for insect protein by scaling up production.
In March 2018, Aspire Food Group has acquired Exo, a Brooklyn-based company that produces cricket-based protein bars. Austin, Texas-based Aspire suggests the deal, for an undisclosed sum, creates a farm-to-table insect protein company. Aspire said it will integrate Exo's product line into its data-driven farming operations and supply chain to create new products and fuel the future growth of both customer bases, and the larger industry in general.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.