Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: TechSci Research | PRODUCT CODE: 1779097

Cover Image

PUBLISHER: TechSci Research | PRODUCT CODE: 1779097

Solar Highway Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented, By Component, By Application, By End-User, By Region, By Competition, 2020-2030F

PUBLISHED:
PAGES: 180 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
Unprintable PDF (Single User License)
USD 4500
PDF and Excel (Multi-User License)
USD 5500
PDF and Excel (Custom Research License)
USD 8000

Add to Cart

We offer 8 hour analyst time for an additional research. Please contact us for the details.

The Solar Highway Market was valued at USD 1.01 Billion in 2024 and is expected to reach USD 4.95 Billion by 2030 with a CAGR of 30.12%. The Solar Highway Market refers to the segment of infrastructure development focused on integrating photovoltaic (PV) solar energy technology directly into road surfaces and highway infrastructure to generate renewable energy while supporting transportation needs. This market encompasses the design, development, and deployment of solar-powered road systems that utilize advanced materials-such as tempered glass panels, embedded solar cells, and smart sensors-to convert sunlight into electricity. The generated power can be used for multiple applications, including street lighting, traffic signals, electric vehicle (EV) charging stations, and even feeding surplus energy into the grid. Solar highways serve dual purposes by maximizing land use efficiency and contributing to sustainable energy production without requiring additional land resources.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.01 Billion
Market Size 2030USD 4.95 Billion
CAGR 2025-203030.12%
Fastest Growing SegmentInverters
Largest MarketNorth America

The market includes various technologies such as modular solar panels, energy storage systems, and integrated smart systems that monitor traffic flow, environmental conditions, and structural health. With growing concerns over climate change and the increasing global demand for clean energy, solar highways offer an innovative solution to decarbonize the transport sector while addressing energy challenges. The market extends beyond just the roads themselves to include peripheral infrastructure such as sound barriers, toll booths, and rest areas that can also be equipped with solar panels. The Solar Highway Market is driven by a combination of government initiatives, public-private partnerships, rising investments in renewable energy, and advancements in solar technology that make it more feasible and cost-effective for large-scale infrastructure integration.

Key Market Drivers

Growing Demand for Sustainable Infrastructure and Renewable Energy Integration

The increasing global emphasis on sustainable development and the urgent need to reduce greenhouse gas emissions are significantly driving the growth of the solar highway market. As governments and private sectors prioritize environmental sustainability, integrating renewable energy solutions into existing infrastructure is becoming a strategic necessity. Solar highways offer a dual-functionality solution by enabling efficient transportation while simultaneously generating clean electricity through embedded photovoltaic panels in road surfaces or adjacent areas. This integration maximizes land use, particularly in densely populated or land-constrained regions, and supports national renewable energy targets.

Countries are seeking innovative ways to meet climate goals, and solar highways represent a forward-looking approach to decarbonizing both energy and transport sectors. Moreover, as part of national energy transitions, solar highways align with the broader agenda of reducing dependence on fossil fuels and diversifying the energy mix. The ability of these highways to produce clean power that can feed into the grid, support electric vehicle charging stations, or power road infrastructure such as lighting and sensors makes them highly valuable. Their scalability also allows deployment along highways, expressways, and smart city corridors, further aligning with urban planning efforts.

The visibility of solar highways also promotes public awareness and acceptance of renewable energy, reinforcing government and corporate environmental commitments. Additionally, the growing focus on carbon neutrality from industries, transportation departments, and city councils is creating a favorable policy and regulatory environment for solar road adoption. As environmental regulations tighten and global institutions push for net-zero infrastructure, the demand for solutions like solar highways is poised to accelerate, positioning them as a critical component of future smart and sustainable transport networks. Over 70% of global greenhouse gas emissions are linked to infrastructure-related activities, prompting urgent investment in sustainable systems. The global investment in sustainable infrastructure is projected to exceed USD 9 trillion by 2030. More than 130 countries have committed to net-zero emissions, accelerating renewable energy integration. Solar energy accounted for nearly 55% of global renewable capacity additions in the past year. The global renewable energy market is expected to reach USD 2 trillion by 2032, growing at a CAGR of over 10%. Smart infrastructure investments are estimated to reduce urban carbon emissions by up to 30% by 2030. The number of cities implementing sustainable infrastructure solutions has increased by over 80% in the last five years.

Key Market Challenges

High Installation and Maintenance Costs

One of the most significant challenges facing the solar highway market is the extremely high cost associated with the installation and ongoing maintenance of solar-integrated road surfaces. Unlike conventional rooftop or ground-mounted solar panels, solar highways require highly durable and technologically advanced materials that can withstand constant vehicular pressure, extreme weather conditions, and long-term exposure to environmental stressors. These panels must be reinforced with materials such as tempered glass or high-strength composites, which significantly increases the manufacturing and deployment cost per unit compared to traditional solar installations.

Furthermore, installation on roadways requires specialized labor, road closures, and rerouting of traffic, adding logistical complexity and cost. In many cases, roads must be custom-designed or retrofitted with embedded solar panels, which may involve altering existing infrastructure such as drainage systems, cabling, and structural supports. In addition to initial capital investment, maintenance of solar highways poses another financial burden. Roads face continuous mechanical stress from heavy vehicles, exposure to oil spills, dirt accumulation, snow, and ice-factors that degrade solar panel efficiency and require frequent cleaning, repairs, and replacements. Ensuring consistent energy output and safety standards often necessitates the use of advanced monitoring systems and climate-resistant coatings, which further increase operating expenses.

This high cost structure makes the return on investment relatively slow, especially in regions where energy prices are low or where conventional solar solutions are more cost-effective. As a result, many public and private stakeholders are hesitant to invest in large-scale deployments without clear evidence of long-term performance reliability and cost efficiency. In developing economies, the challenge is further magnified due to budget constraints, limited technical expertise, and higher risks associated with the adoption of emerging technologies. While pilot projects have shown potential, scalability remains limited because of the unfavorable cost-benefit ratio when compared to more established renewable energy alternatives.

Unless there are significant breakthroughs in material science, production methods, and system integration, the high costs associated with solar highways will continue to hinder broader adoption and pose a major barrier to market growth. This challenge necessitates greater R&D investments and collaborative efforts between technology developers, infrastructure agencies, and governments to drive innovation, reduce costs, and establish viable financial models to support widespread implementation.

Key Market Trends

Integration of Photovoltaics with Transportation Infrastructure

A significant trend in the solar highway market is the increasing integration of photovoltaic (PV) technology into transportation infrastructure to optimize space utilization and energy generation. With land scarcity becoming a critical challenge in many countries, governments and infrastructure developers are turning to road surfaces and adjacent areas as untapped opportunities for clean energy production. By embedding solar panels directly into highways, sidewalks, noise barriers, and adjacent road structures, this trend is enabling dual-use infrastructure that not only supports vehicular movement but also contributes to decentralized power generation.

The concept of energy-generating roads is gaining momentum, especially in urban and semi-urban regions where large-scale solar farms may not be feasible. This integration aligns with broader smart city initiatives and sustainability goals, allowing transport departments to reduce reliance on traditional grid energy for powering roadside lighting, traffic signals, EV charging stations, and smart signage systems. It also opens up avenues for cost savings and long-term energy independence for municipalities. Moreover, advancements in solar panel durability, anti-slip coatings, and weight-bearing capacities are addressing the earlier concerns regarding the viability of PV surfaces under heavy vehicular load.

As R&D efforts continue to improve panel efficiency and installation techniques, more pilot projects are transitioning to commercial-scale implementations. This is particularly evident in countries with high solar potential and large infrastructure budgets. The integration trend is also fostering public-private partnerships, where energy companies collaborate with highway authorities to co-develop energy-positive roads that feed excess power back into the grid. As these systems evolve, the synergy between renewable energy and mobility infrastructure is expected to be a transformative force in shaping low-carbon urban landscapes, opening up scalable market opportunities for solution providers and construction firms alike.

Key Market Players

  • Colas Group
  • Solar Roadways, Inc.
  • Sichuan Zhonghai New Energy Co., Ltd.
  • Heijmans N.V.
  • China Communications Construction Company Limited
  • Integrated Roadways LLC
  • Bouygues Energies & Services (Bouygues Group)
  • Huawei Digital Power Technologies Co., Ltd.

Report Scope:

In this report, the Global Solar Highway Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Solar Highway Market, By Component:

  • Solar Panels
  • Inverters
  • Others

Solar Highway Market, By Application:

  • Roadway
  • Foot Path/Bike Path
  • Parking Lots

Solar Highway Market, By End-User:

  • Government & Public Infrastructure
  • Private Entities
  • Individuals

Solar Highway Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Solar Highway Market.

Available Customizations:

Global Solar Highway Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).
Product Code: 30270

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Solar Highway Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Component (Solar Panels, Inverters, Others)
    • 5.2.2. By Application (Roadways, Foot Path/Bike Path, Parking Lots)
    • 5.2.3. By End-User (Government & Public Infrastructure, Private Entities, Individuals)
    • 5.2.4. By Region
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Solar Highway Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component
    • 6.2.2. By Application
    • 6.2.3. By End-User
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Solar Highway Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Component
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End-User
    • 6.3.2. Canada Solar Highway Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Component
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End-User
    • 6.3.3. Mexico Solar Highway Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Component
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End-User

7. Europe Solar Highway Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Application
    • 7.2.3. By End-User
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Solar Highway Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End-User
    • 7.3.2. United Kingdom Solar Highway Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End-User
    • 7.3.3. Italy Solar Highway Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End-User
    • 7.3.4. France Solar Highway Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Component
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End-User
    • 7.3.5. Spain Solar Highway Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Component
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End-User

8. Asia-Pacific Solar Highway Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Application
    • 8.2.3. By End-User
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Solar Highway Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End-User
    • 8.3.2. India Solar Highway Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End-User
    • 8.3.3. Japan Solar Highway Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End-User
    • 8.3.4. South Korea Solar Highway Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By End-User
    • 8.3.5. Australia Solar Highway Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By End-User

9. South America Solar Highway Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Application
    • 9.2.3. By End-User
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Solar Highway Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End-User
    • 9.3.2. Argentina Solar Highway Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End-User
    • 9.3.3. Colombia Solar Highway Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End-User

10. Middle East and Africa Solar Highway Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Application
    • 10.2.3. By End-User
    • 10.2.4. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Solar Highway Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End-User
    • 10.3.2. Saudi Arabia Solar Highway Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End-User
    • 10.3.3. UAE Solar Highway Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End-User
    • 10.3.4. Kuwait Solar Highway Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Component
        • 10.3.4.2.2. By Application
        • 10.3.4.2.3. By End-User
    • 10.3.5. Turkey Solar Highway Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Component
        • 10.3.5.2.2. By Application
        • 10.3.5.2.3. By End-User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. Colas Group
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. Solar Roadways, Inc.
  • 13.3. Sichuan Zhonghai New Energy Co., Ltd.
  • 13.4. Heijmans N.V.
  • 13.5. China Communications Construction Company Limited
  • 13.6. Integrated Roadways LLC
  • 13.7. Bouygues Energies & Services (Bouygues Group)
  • 13.8. Huawei Digital Power Technologies Co., Ltd.

14. Strategic Recommendations

15. About Us & Disclaimer

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!